Isolation of HIV-1-neutralizing mucosal monoclonal antibodies from human colostrum.
Date
2012
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
BACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Friedman, James, S Munir Alam, Xiaoying Shen, Shi-Mao Xia, Shelley Stewart, Kara Anasti, Justin Pollara, Genevieve G Fouda, et al. (2012). Isolation of HIV-1-neutralizing mucosal monoclonal antibodies from human colostrum. PLoS One, 7(5). p. e37648. 10.1371/journal.pone.0037648 Retrieved from https://hdl.handle.net/10161/10587.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Garnett H. Kelsoe
- Lymphocyte development and antigen-driven diversification of immunoglobulin and T cell antigen receptor genes.
2. The germinal center reaction and mechanisms for clonal selection and self - tolerance. The origins of autoimmunity.
3. Interaction of innate- and adaptive immunity and the role of inflammation in lymphoid organogenesis.
4. The role of secondary V(D)J gene rearrangment in lymphocyte development and malignancies.
5. Mathematical modeling of immune responses, DNA motifs, collaborations in bioinformatics.
6. Humoral immunity to influenza and HIV-1.
Georgia Doris Tomaras
Dr. Georgia Tomaras is a tenured Professor of Surgery, Professor of Immunology, Professor of Molecular Genetics and Microbiology and is a Fellow of the American Academy of Microbiology (AAM) and a Fellow of the American Association for the Advancement of Science (AAAS). Dr. Tomaras is Co-Director of the Center for Human Systems Immunology (CHSI) Duke University and Director of the Duke Center for AIDS Research (CFAR). Her national and international leadership roles include: Executive Management Team (EMT) leader and mPI for the HIV Vaccine Trials Network (HVTN); Director of Lab Sciences (HVTN); and Chair of NIH Vaccine Research Center (VRC) Board of Scientific Counselors. Her prior leadership roles include serving as the Director of Research, Duke Human Vaccine Institute (DHVI); Director of the DHVI Training Program; Associate Director of DHVI Research; Co-Director of the Interdisciplinary Research Training Program in AIDS (IRTPA) Duke; Chair of the National Institutes of Health (NIH) AIDS Vaccine Research Subcommittee (AVRS), and Advisory Counsel member of the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID). Dr. Tomaras’ primary research focus is deciphering mechanisms of protective human immunity and identification of immune correlates of protection to further development of effective vaccines against infectious diseases.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.