Super-resolution method for arbitrary retrospective sampling in fluorescence tomography with raster scanning photodetectors.

Loading...
Thumbnail Image

Date

2013-03-22

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

270
views
167
downloads

Citation Stats

Abstract

Dense spatial sampling is required in high-resolution optical imaging and many other biomedical optical imaging methods, such as diffuse optical imaging. Arrayed photodetectors, in particular charge coupled device cameras are commonly used mainly because of their high pixel count. Nonetheless, discrete-element photodetectors, such as photomultiplier tubes, are often desirable in many performance-demanding imaging applications. However, utilization of the discrete-element photodetectors typically requires raster scan to achieve arbitrary retrospective sampling with high density. Care must be taken in using the relatively large sensitive areas of discrete-element photodetectors to densely sample the image plane. In addition, off-line data analysis and image reconstruction often require full-field sampling. Pixel-by-pixel scanning is not only slow but also unnecessary in diffusion-limited imaging. We propose a super-resolution method that can recover the finer features of an image sampled with a coarse-scale sensor. This generalpurpose method was established on the spatial transfer function of the photodetector-lens system, and achieved super-resolution by inversion of this linear transfer function. Regularized optimization algorithms were used to achieve optimized deconvolution. Compared to the uncorrected blurred image, the proposed super-resolution method significantly improved image quality in terms of resolution and quantitation. Using this reconstruction method, the acquisition speed with a scanning photodetector can be dramatically improved without significantly sacrificing sampling density or flexibility.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1117/12.2001518

Publication Info

Zhang, Xiaofeng (2013). Super-resolution method for arbitrary retrospective sampling in fluorescence tomography with raster scanning photodetectors. Proc SPIE Int Soc Opt Eng, 8572. 10.1117/12.2001518 Retrieved from https://hdl.handle.net/10161/13280.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.