Regulation of HIF-1α during Hypoxia by DAP5-Induced Translation of PHD2
Date
2018
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Death associated protein 5 (DAP5) is an atypical isoform of the translation initiation scaffold eukaryotic initiation factors 4GI and II (eIF4GI/II), which recruit mRNAs to ribosomes in mammals. Unlike eIF4GI/II, DAP5 binds eIF2β, a subunit of the eIF2 complex that delivers methionyl-tRNA to ribosomes. Despite extensive work describing eIF4GI, an understanding of DAP5 activation is yet to be described.
Here I describe our discovery that DAP5:eIF2β binding is regulated by DAP5 phosphorylation and can be stimulated by specific stimuli including protein kinase C PKC-Raf-ERK1/2 signals, mitosis and hypoxia, wherein DAP5:eIF2β binding determines DAP5’s influence on global and template-specific translation. However, DAP5 depletion causes an unanticipated surge of hypoxia-inducible factor 1α (HIF-1α), the transcription factor and master switch of the hypoxia response. The hypoxia response is tempered through HIF-1α hydroxylation by the oxygen-sensing prolyl hydroxylase-domain protein 2 (PHD2), and subsequent ubiquitination and degradation. Furthermore, we found that DAP5 regulates HIF-1α abundance and Akt signaling through DAP5:eIF2β-dependent translation of PHD2. DAP5:eIF2-induced PHD2 translation occurs during hypoxia-associated protein synthesis repression, indicating a role as a safeguard to reverse HIF-1α accumulation and curb the hypoxic response implying that DAP5:eIF2β binding may describe a conserved mechanism for selective stress induced translation.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Bryant, Jeffrey (2018). Regulation of HIF-1α during Hypoxia by DAP5-Induced Translation of PHD2. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16934.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.