Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales

Loading...
Thumbnail Image

Date

2016-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

126
views
422
downloads

Citation Stats

Abstract

Unforced global mean surface air temperature (T) is stable in the long term primarily because warm T anomalies are associated with enhanced outgoing longwave radiation (↑LW) to space and thus a negative net radiative energy flux (N, positive downward) at the top of the atmosphere (TOA). However, it is shown here that, with the exception of high latitudinal and specific continental regions, warm unforced surface air temperature anomalies at the local spatial scale [T(θ, φ), where (θ, φ) = (latitude, longitude)] tend to be associated with anomalously positive N(θ, φ). It is revealed that this occurs mainly because warm T(θ, φ) anomalies are accompanied by anomalously low surface albedo near sea ice margins and over high altitudes, low cloud albedo over much of the middle and low latitudes, and a large water vapor greenhouse effect over the deep Indo-Pacific. It is shown here that the negative N versus T relationship arises because warm anomalies are associated with large divergence of atmospheric energy transport over the tropical Pacific [where the N(θ, φ) versus T(θ, φ) relationship tends to be positive] and convergence of atmospheric energy transport at high latitudes [where the N(θ, φ) versus T(θ, φ) relationship tends to be negative]. Additionally, the characteristic surface temperature pattern contains anomalously cool regions where a positive local N(θ, φ) versus T(θ, φ) relationship helps induce negative N. Finally, large-scale atmospheric circulation changes play a critical role in the production of the negative N versus T relationship as they drive cloud reduction and atmospheric drying over large portions of the tropics and subtropics, which allows for greatly enhanced ↑LW.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1175/JCLI-D-15-0384.1

Publication Info

Brown, PT, W Li, J Jiang and H Su (2016). Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales. Journal of Climate, 29(3). pp. 925–940. 10.1175/JCLI-D-15-0384.1 Retrieved from https://hdl.handle.net/10161/15913.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Li

Wenhong Li

Associate Professor of Climate

Dr. Li's research interests focus primarily on climate dynamics, land-atmosphere interaction, hydroclimatology, and climate modeling. Her current research is to understand how the hydrological cycle changes in the current and future climate and their impacts on the ecosystems, subtropical high variability and change, unforced global temperature variability, and climate and health issues.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.