An energetic variational approach for ION transport

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


The transport and distribution of charged particles are crucial in the study of many physical and biological problems. In this paper, we employ an Energy Variational Approach to derive the coupled Poisson-Nernst-Planck-Navier-Stokes system. All of the physics is included in the choices of corresponding energy law and kinematic transport of particles. The variational derivations give the coupled force balance equations in a unique and deterministic fashion. We also discuss the situations with different types of boundary conditions. Finally, we show that the Onsager's relation holds for the electrokinetics, near the initial time of a step function applied field. © 2014 International Press.





Published Version (Please cite this version)


Publication Info

Xu, S, P Sheng and C Liu (2014). An energetic variational approach for ION transport. Communications in Mathematical Sciences, 12(4). pp. 779–789. 10.4310/CMS.2014.v12.n4.a9 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Shixin Xu

Assistant Professor of Mathematics at Duke Kunshan University

Shixin Xu is an Assistant Professor of Mathematics.   His research interests are machine learning and data-driven models for diseases,  multiscale modeling of complex fluids, Neurovascular coupling, homogenization theory, and numerical analysis.  The current projects he is working on are

  • image data-based for the prediction of hemorrhagic transformation in acute ischemic stroke,
  • electrodynamics modeling of saltatory conduction along a myelinated axon
  • electrochemical modeling
  • fluid-structure interaction with mass transportation and reaction

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.