Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood.
Date
2015-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Human peripheral blood and umbilical cord blood represent attractive sources of cells for reprogramming to induced pluripotent stem cells (iPSCs). However, to date, most of the blood-derived iPSCs were generated using either integrating methods or starting from T-lymphocytes that have genomic rearrangements thus bearing uncertain consequences when using iPSC-derived lineages for disease modeling and cell therapies. Recently, both peripheral blood and cord blood cells have been reprogrammed into transgene-free iPSC using the Sendai viral vector. Here we demonstrate that peripheral blood can be utilized for medium-throughput iPSC production without the need to maintain cell culture prior to reprogramming induction. Cell reprogramming can also be accomplished with as little as 3000 previously cryopreserved cord blood cells under feeder-free and chemically defined Xeno-free conditions that are compliant with standard Good Manufacturing Practice (GMP) regulations. The first iPSC colonies appear 2-3 weeks faster in comparison to previous reports. Notably, these peripheral blood- and cord blood-derived iPSCs are free of detectable immunoglobulin heavy chain (IGH) and T cell receptor (TCR) gene rearrangements, suggesting they did not originate from B- or T- lymphoid cells. The iPSCs are pluripotent as evaluated by the scorecard assay and in vitro multi lineage functional cell differentiation. Our data show that small volumes of cryopreserved peripheral blood or cord blood cells can be reprogrammed efficiently at a convenient, cost effective and scalable way. In summary, our method expands the reprogramming potential of limited or archived samples either stored at blood banks or obtained from pediatric populations that cannot easily provide large quantities of peripheral blood or a skin biopsy.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Zhou, Hongyan, Hector Martinez, Bruce Sun, Aiqun Li, Matthew Zimmer, Nicholas Katsanis, Erica E Davis, Joanne Kurtzberg, et al. (2015). Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem cell reviews and reports, 11(4). pp. 652–665. 10.1007/s12015-015-9586-8 Retrieved from https://hdl.handle.net/10161/24630.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Joanne Kurtzberg
Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine. Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University. The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program. The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.
Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.
In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA. She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.