Earthworms modify plant biomass and nitrogen capture under conditions of soil nutrient heterogeneity and elevated atmospheric CO<inf>2</inf> concentrations
Date
2014-01-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Earthworms modify the way roots respond to soil nutrient patchiness. However, few studies have evaluated the joint effects of earthworms and soil heterogeneity on plant community biomass and species dominance, and none of them have assessed the influence of different patch features and environmental conditions on such effects. We evaluated how soil nutrient heterogeneity, earthworms (Eisenia fetida), organic material quality (15N-labelled leaves and roots of contrasting C: N ratios) and elevated atmospheric CO2 concentrations (phytotron chambers) affected the resource-use strategy, biomass and species dominance of mixtures formed by Lolium perenne L. and Plantago lanceolata L. Soil heterogeneity decreased N capture from the organic material, especially in the presence of earthworms. Mixtures experienced a 26 and 36% decrease in shoot and root biomass when earthworms were added to the heterogeneous microcosms, but only with high quality organic material. The dominance of L. perenne was lower under conditions of elevated CO2, nutrient heterogeneity and earthworms. Our data suggest that earthworms can neutralize positive plant growth responses to soil heterogeneity by exacerbating decreases in the supply of N to the plant. Specifically, earthworms foraging for high quality patches may stimulate microbial N immobilization, translating into lower N capture by plants. Increases in casting activity under elevated CO2, and hence in microbial N immobilization, may also explain why earthworms modulated the effects of soil heterogeneity and CO2 concentrations on plant community structure. We show that earthworms, absent from most soil nutrient heterogeneity studies, mediate plant biomass responses to nutrient patchiness by affecting N capture. Future plant-foraging behaviour studies should consider the roles played by soil engineers such as earthworms, so that results can be better extrapolated to natural communities. © 2014 Elsevier Ltd.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
García-Palacios, Pablo, Fernando T Maestre, Mark A Bradford and James F Reynolds (2014). Earthworms modify plant biomass and nitrogen capture under conditions of soil nutrient heterogeneity and elevated atmospheric CO2 concentrations. Soil Biology and Biochemistry, 78. pp. 182–188. 10.1016/j.soilbio.2014.08.002 Retrieved from https://hdl.handle.net/10161/24230.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
James F. Reynolds
Integrated assessment of complex human-environmental systems; Land degradation and desertification in global drylands; Conceptual frameworks and models to advance the science of dryland development
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.