Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances and Weak Lensing

Abstract

We perform a joint analysis of the counts and weak lensing signal of redMaPPer clusters selected from the Dark Energy Survey (DES) Year 1 dataset. Our analysis uses the same shear and source photometric redshifts estimates as were used in the DES combined probes analysis. Our analysis results in surprisingly low values for $S_8 =\sigma_8(\Omega_{\rm m}/0.3)^{0.5}= 0.65\pm 0.04$, driven by a low matter density parameter, $\Omega_{\rm m}=0.179^{+0.031}{-0.038}$, with $\sigma_8-\Omega{\rm m}$ posteriors in $2.4\sigma$ tension with the DES Y1 3x2pt results, and in $5.6\sigma$ with the Planck CMB analysis. These results include the impact of post-unblinding changes to the analysis, which did not improve the level of consistency with other data sets compared to the results obtained at the unblinding. The fact that multiple cosmological probes (supernovae, baryon acoustic oscillations, cosmic shear, galaxy clustering and CMB anisotropies), and other galaxy cluster analyses all favor significantly higher matter densities suggests the presence of systematic errors in the data or an incomplete modeling of the relevant physics. Cross checks with X-ray and microwave data, as well as independent constraints on the observable--mass relation from SZ selected clusters, suggest that the discrepancy resides in our modeling of the weak lensing signal rather than the cluster abundance. Repeating our analysis using a higher richness threshold ($\lambda \ge 30$) significantly reduces the tension with other probes, and points to one or more richness-dependent effects not captured by our model.

Department

Description

Provenance

Citation

Scholars@Duke

Scolnic

Daniel M. Scolnic

Associate Professor of Physics

Use observational tools to measure the expansion history of the universe.  Trying to answer big questions like 'what is dark energy?'.

Troxel

Michael A. Troxel

Associate Professor of Physics

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.