Morphology of renormalization-group flow for the de Almeida-Thouless-Gardner universality class
Abstract
A replica-symmetry-breaking phase transition is predicted in a host of disordered media. The criticality of the transition has, however, long been questioned below its upper critical dimension, six, due to the absence of a critical fixed point in the renormalization-group flows at one-loop order. A recent two-loop analysis revealed a possible strong-coupling fixed point but, given the uncontrolled nature of perturbative analysis in the strong-coupling regime, debate persists. Here we examine the nature of the transition as a function of spatial dimension and show that the strong-coupling fixed point can go through a Hopf bifurcation, resulting in a critical limit cycle and a concomitant discrete scale invariance. We further investigate a different renormalization scheme and argue that the basin of attraction of the strong-coupling fixed point/limit cycle may thus stay finite for all dimensions.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke
Patrick Charbonneau
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.