Morphology of renormalization-group flow for the de Almeida-Thouless-Gardner universality class
Abstract
A replica-symmetry-breaking phase transition is predicted in a host of disordered media. The criticality of the transition has, however, long been questioned below its upper critical dimension, six, due to the absence of a critical fixed point in the renormalization-group flows at one-loop order. A recent two-loop analysis revealed a possible strong-coupling fixed point but, given the uncontrolled nature of perturbative analysis in the strong-coupling regime, debate persists. Here we examine the nature of the transition as a function of spatial dimension and show that the strong-coupling fixed point can go through a Hopf bifurcation, resulting in a critical limit cycle and a concomitant discrete scale invariance. We further investigate a different renormalization scheme and argue that the basin of attraction of the strong-coupling fixed point/limit cycle may thus stay finite for all dimensions.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Patrick Charbonneau
Patrick Charbonneau is Professor of Physics at Duke University. His research in soft matter and statistical physics uses theory and computer simulations to study glassy materials and frustrated systems. He also contributes to the history of science, curating projects on quantum and statistical physics as well as food history.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.
