Bagging and the Bayesian Bootstrap

Loading...
Thumbnail Image

Date

2001

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

326
views
2372
downloads

Abstract

Bagging is a method of obtaining more ro- bust predictions when the model class under consideration is unstable with respect to the data, i.e., small changes in the data can cause the predicted values to change significantly. In this paper, we introduce a Bayesian ver- sion of bagging based on the Bayesian boot- strap. The Bayesian bootstrap resolves a the- oretical problem with ordinary bagging and often results in more efficient estimators. We show how model averaging can be combined within the Bayesian bootstrap and illustrate the procedure with several examples.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Clyde

Merlise Clyde

Professor of Statistical Science

Model uncertainty and choice in prediction and variable selection problems for linear, generalized linear models and multivariate models. Bayesian Model Averaging. Prior distributions for model selection and model averaging. Wavelets and adaptive kernel non-parametric function estimation. Spatial statistics. Experimental design for nonlinear models. Applications in proteomics, bioinformatics, astro-statistics, air pollution and health effects, and environmental sciences.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.