Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.

Abstract

Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96 h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na(+)/K(+ )ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1080/17435390.2016.1206150

Publication Info

Kwok, Kevin WH, Wu Dong, Stella M Marinakos, Jie Liu, Ashutosh Chilkoti, Mark R Wiesner, Melissa Chernick, David E Hinton, et al. (2016). Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology, 10(9). pp. 1306–1317. 10.1080/17435390.2016.1206150 Retrieved from https://hdl.handle.net/10161/13016.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hinton

David E. Hinton

Nicholas Distinguished Professor Emeritus of Environmental Quality

The Hinton laboratory focuses on mechanistic toxicity in all life stages of small, aquarium model fish and in selected species with particular environmental relevance (freshwater and marine). With the latter, investigations focus on stressor responses and include follow up studies after oil spills. Studies with the laboratory model fish take advantage of the compressed life cycle to improve understanding of organellar, cellular and tissues responses that arise after exposure and follow either a temporal and/or a concentration gradient. At the end of these serial examinations, we have pioneered the use of high resolution light and fluorescent microscopy and electron microscopy in these small fish species to better understand resultant phenotypes and to correlate structural alteration with molecular biological studies. In this way we are anchoring phenotypes with gene expression. In individual fish where specific genes have been mutated (Collaboration with Dr. Keith Cheng, Hershey Medical Center, Hershey, PA) or in individuals exposed to organic substances of known or expected toxicity, structural analysis at various levels of biological organization enables integration across all levels of biological organization enabling whole body phenomics. Special projects include The Duke Superfund Research Center, 2P42-ESO10356-10A2, supported by NIH/NIEHS. Studies investigate responses of fish to polycyclic aromatic hydrocarbons and include early life stages and multigenerational effects. Contaminated and reference sites are included in these investigations of feral fish. Also, we receive funding as part of theme 2 of the Center for Environmental Implications of Nano Technology (CEINT). Our studies seek to determine whether there are specific toxic consequences upon exposure to nano silver (Ag NPs) versus exposure to conventional silver. We hosted Na Zheng (Angie), Visiting Investigator, Associate Professor, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences. She was the recipient of a K.C. Wong award supporting her role as visiting investigator. Together, we investigated metals mixtures and embryo toxicity. We collaborate with Stella Marinakos, Pratt School and CEINT on the synthesis and refinement of nanoselenium. This complements work done over the past year with seleno-methionine and sodium selenite in parental and embryo exposures. We continue to investigate ways to assess whole body responses of aquarium model fish and to link phenotype to genotype. Collaboration with the Stapleton laboratory has investigated alterations in embryo and larval zebrafish exposed to flame retardant compounds and selected metabolites. Here our morphologic investigations have helped to differentiate between delayed development and toxicity in the developing eye.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.