On the mean-field limit for the Vlasov-Poisson-Fokker-Planck system
Abstract
We devise and study a random particle blob method for approximating the Vlasov-Poisson-Fokkker-Planck (VPFP) equations by a $N$-particle system subject to the Brownian motion in $\mathbb{R}^3$ space. More precisely, we show that maximal distance between the exact microscopic and the mean-field trajectories is bounded by $N^{-\frac{1}{3}+\varepsilon}$ ($\frac{1}{63}\leq\varepsilon<\frac{1}{36}$) for a system with blob size $N^{-\delta}$ ($\frac{1}{3}\leq\delta<\frac{19}{54}-\frac{2\varepsilon}{3}$) up to a probability $1-N^{-\alpha}$ for any $\alpha>0$, which improves the cut-off in [10]. Our result thus leads to a derivation of VPFP equations from the microscopic $N$-particle system. In particular we prove the convergence rate between the empirical measure associated to the particle system and the solution of the VPFP equations. The technical novelty of this paper is that our estimates crucially rely on the randomness coming from the initial data and from the Brownian motion.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.