Reduced auditory perception and brain response with quiet TMS coil.

Abstract

Background

Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC).

Objective

To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil.

Methods

Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120 % RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal while stimulating the primary motor cortex.

Results

RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100 % coil-specific RMT sounded like Cool-B65 at 34 % RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS- DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation.

Conclusions

The stimulation efficiency of qTMS-DCC matched Cool-B65 while having substantially lower perceived loudness and auditory-evoked potentials.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.brs.2024.10.003

Publication Info

Murphy, David LK, Lari M Koponen, Eleanor Wood, Yiru Li, Noreen Bukhari-Parlakturk, Stefan M Goetz and Angel V Peterchev (2024). Reduced auditory perception and brain response with quiet TMS coil. Brain stimulation, 17(6). pp. 1197–1207. 10.1016/j.brs.2024.10.003 Retrieved from https://hdl.handle.net/10161/32054.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bukhari-Parlakturk

Noreen Bukhari-Parlakturk

Assistant Professor of Neurology

I have a long standing interest in developing disease-modifying therapies for movement disorders, a major unmet clinical need. I work at the interface of neuroscience and neurology to apply mechanistic understanding of neurological disease to develop targeted neuromodulatory therapies and in the process further disease mechanisms and medical therapy.

Goetz

Stefan M Goetz

Assistant Professor in Psychiatry and Behavioral Sciences
Peterchev

Angel V Peterchev

Professor in Psychiatry and Behavioral Sciences

I direct the Brain Stimulation Engineering Lab (BSEL) which focuses on the development, modeling, and application of devices and paradigms for transcranial brain stimulation. Transcranial brain stimulation involves non-invasive delivery of fields (e.g., electric and magnetic) to the brain that modulate neural activity. It is widely used as a tool for research and a therapeutic intervention in neurology and psychiatry, including several FDA-cleared indications. BSEL develops devices for transcranial magnetic stimulation (TMS) and other forms of magnetic stimulation such as magnetogenetics that leverage design techniques from power electronics and computational electromagnetics to enable more flexible stimulus control, focal stimulation, and quiet operation. We also deploy these devices in experimental studies to characterize and optimize the brain response to TMS. Another line of work is multi-scale computational models that couple simulations of the electromagnetic fields, single neuron responses, and neural population modulation induced by electric and magnetic brain stimulation. These models are calibrated and validated with experimental neural recordings through various collaborations. Apart from understanding of mechanisms, we develop modeling, algorithmic, and targeting tools for response estimation, dose individualization, and precise localization of transcranial brain stimulation using advanced techniques such as artificial neural networks and machine learning. Moreover, BSEL is involved in the integration of transcranial brain stimulation with robotics, neuronavigation, intracranial electrophysiology recordings, and imaging modalities such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), as well as the evaluation of the safety of device–device interactions, for example between transcranial stimulators and implants. Importantly, we collaborate widely with neuroscientists and clinicians at Duke and other institutions to translate developments from the lab to research and clinical applications. For over 17 years, BSEL has been continuously supported with multiple NIH grants as well as funding by DARPA, NSF, Brain & Behavior Research Foundation, Coulter Foundation, Duke Institute for Brain Sciences, MEDx, Duke University Energy Initiative, and industry. Further, some of our technology has been commercialized, for example as ElevateTMS cTMS, or incorporated in free software packages, such as SimNIBS and SAMT. In recognition of “excellence in non-invasive brain stimulation research that stimulates further work at a higher scientific level” I received the Brainbox Initiative John Rothwell Award in 2024.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.