A High Precision Measurement of the Proton Charge Radius at JLab

dc.contributor.advisor

Gao, Haiyan

dc.contributor.author

Xiong, Weizhi

dc.date.accessioned

2020-06-09T17:58:12Z

dc.date.available

2020-06-09T17:58:12Z

dc.date.issued

2020

dc.department

Physics

dc.description.abstract

The elastic electron-proton ($e-p$) scattering and the spectroscopy of hydrogen atoms are the two traditional methods to determine the proton charge radius ($r_{p}$). In 2010, a new method using the muonic hydrogen ($\mu$H)\footnote{A muonic hydrogen has its orbiting electron replaced by a muon.} spectroscopy reported a $r_{p}$ result that was nearly ten times more precise but significantly smaller than the values from the compilation of all previous $r_{p}$ measurements, creating the ``proton charge radius puzzle".

In order to investigate the puzzle,

the PRad experiment (E12-11-106\footnote{Spokespersons: A. Gasparian (contact), H. Gao, M. Khandaker, D. Dutta}) was first proposed in 2011 and performed in 2016 in Hall B at the Thomas Jefferson National Accelerator Facility, with both 1.1 and 2.2 GeV electron beams. The experiment measured the $e-p$ elastic scattering cross sections in an unprecedented low values of momentum transfer squared region ($Q^2 = 2.1\times10^{-4} - 0.06~\rm{(GeV/c)}^2$), with a sub-percent precision.

The PRad experiment utilized a calorimetric method that was magnetic-spectrometer-free. Its detector setup included a large acceptance and high resolution calorimeter (HyCal), and two large-area, high-spatial-resolution Gas Electron Multiplier (GEM) detectors. To have a better control over the systematic uncertainties, the absolute $e-p$ elastic scattering cross section was normalized to that of the well-known M$\o$ller scattering process, which was measured simultaneously during the experiment. For each beam energy, all data with different $Q^{2}$ were collected simultaneously with the same detector setup, therefore sharing a common normalization parameter. The windowless H$_2$ gas-flow target utilized in the experiment largely removed a typical background source, the target cell windows. The proton charge radius was determined as $r_{p} = 0.831 \pm 0.007_{\rm{stat.}} \pm 0.012_{\rm{syst.}}$~fm, which is smaller than the average $r_{p}$ from previous $e-p$ elastic scattering experiments, but in agreement with the $\mu$H spectroscopic results within the experimental uncertainties.

dc.identifier.uri

https://hdl.handle.net/10161/20844

dc.subject

Particle physics

dc.subject

Physics

dc.title

A High Precision Measurement of the Proton Charge Radius at JLab

dc.type

Dissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Xiong_duke_0066D_15400.pdf
Size:
9.14 MB
Format:
Adobe Portable Document Format

Collections