Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with LambdaCDM
Abstract
We present an expanded sample of 75 Milky Way Cepheids with Hubble Space Telescope (HST) photometry and Gaia EDR3 parallaxes which we use to recalibrate the extragalactic distance ladder and refine the determination of the Hubble constant. All HST observations were obtained with the same instrument (WFC3) and filters (F555W, F814W, F160W) used for imaging of extragalactic Cepheids in Type Ia supernova (SN Ia) hosts. The HST observations used the WFC3 spatial scanning mode to mitigate saturation and reduce pixel-to-pixel calibration errors, reaching a mean photometric error of 5 millimags per observation. We use new Gaia EDR3 parallaxes, vastly improved since DR2, and the Period-Luminosity (PL) relation of these Cepheids to simultaneously calibrate the extragalactic distance ladder and to refine the determination of the Gaia EDR3 parallax offset. The resulting geometric calibration of Cepheid luminosities has 1.0% precision, better than any alternative geometric anchor. Applied to the calibration of SNe~Ia, it results in a measurement of the Hubble constant of 73.0 +/- 1.4 km/sec/Mpc, in good agreement with conclusions based on earlier Gaia data releases. We also find the slope of the Cepheid PL relation in the Milky Way, and the metallicity dependence of its zeropoint, to be in good agreement with the mean values derived from other galaxies. In combination with the best complementary sources of Cepheid calibration, we reach 1.8% precision and find H_0=73.2 +/- 1.3 km/sec/Mpc, a 4.2 sigma difference with the prediction from Planck CMB observations under LambdaCDM. We expect to reach ~1.3% precision in the near term from an expanded sample of ~40 SNe Ia in Cepheid hosts.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Daniel M. Scolnic
Use observational tools to measure the expansion history of the universe. Trying to answer big questions like 'what is dark energy?'.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.