Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein.

Loading...
Thumbnail Image

Date

1996-04-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

288
views
180
downloads

Citation Stats

Abstract

To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1172/JCI118587

Publication Info

Rockman, HA, RA Hamilton, LR Jones, CA Milano, L Mao and RJ Lefkowitz (1996). Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein. J Clin Invest, 97(7). pp. 1618–1623. 10.1172/JCI118587 Retrieved from https://hdl.handle.net/10161/5929.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Rockman

Howard Allan Rockman

Edward S. Orgain Distinguished Professor of Cardiology, in the School of Medicine

Rockman Lab: Molecular Mechanisms of Hypertrophy and Heart Failure

Overall Research Direction: The major focus of this laboratory is to understand the molecular mechanisms of hypertrophy and heart failure. My laboratory uses a strategy that combines state of the art molecular techniques to generate transgenic and gene targeted mouse models, combined with sophisticated physiologic measures of in vivo cardiac function. In this manner, candidate molecules are either selectively overexpressed in the mouse heart or genes ablated followed by an in-depth analysis of the physiological phenotype. To model human cardiac disease, we have created several models of cardiac overload in the mouse using both microsurgical techniques and genetic models of cardiac dysfunction.

Areas of Research
1) Signaling: G protein-coupled receptor signaling in hypertrophy and heart failure focusing on the concept of biased signaling of 7 transmembrane receptors.

2) Molecular physiology: In depth physiological analysis of cardiac function in genetically altered mice to understand the role of G protein-coupled receptor signaling pathways on the development of heart failure in vivo.

Milano

Carmelo Alessio Milano

Joseph W. and Dorothy W. Beard Distinguished Professor of Experimental Surgery

Lan Mao

Assistant Professor Emeritus in Medicine

I. Research:
As the director of mouse physiology laboratory, in charge for the all events related with Dr. Howard Rockman's molecular biology laboratory studies needs.
Participate in research in rodents model:
Perform surgery and serve as co-investigator in studies on transgenic mice with heart failure. Develop models of hypertrophy in small animal using micro-surgical techniques (aortic constriction, left ventricular infarction and abdominal aortocaval fistula) and perform a variety physiological studies, obtain and analysis data on hemodynamic study and prepare tissue specimens for father molecular biological study.
Develop and apply surgical techniques for in vivo myocardial function study on small animal, such as, using new developed devices study in vivo mice cardiac function (pressure-volume lop), instrumented mice for conscious blood pressure measure or administration of medicine---carotid artery or gull duck catheterization, and conscious mice echocardiography.
Develop techniques for micro-injection of proteins and vectors in to mouse left ventricle, coronary artery and portal vein.


II. Teaching
10% of time allocated/spent---
Train postdoctoral fellows, visiting scientists and students from all over the world in laboratory procedure involving, including endotracheal intubations, cardiac catheterization, coronary occlusion and intrathoracic/intra-abdominal surgical procedures.
Teach methods of data recording and analysis using laboratory equipment and computer programs, echocardiography apply and measurement.


III. Consultant
Consult and teach microsurgical techniques related on small animals such as, rabbits, rat, hamsters and mice, like mice heart-lung transplantation, portal vein injection and mini-pump implant.
Co-laboratory with large range of Universities and Research Institutes from United States an other countries.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.