RESIDUAL KINETIC VECTORS FOR PROSTHETIC CONTROL
Abstract
Imagined phantom movements have real physiologic expressions within the residual limb, which we termed residual kinetic activity. In order to exploit the residual functions of transradial amputees we developed a system to register dynamic pressure patterns produced by the residual limb during voluntary commands for motions. This pattern was then converted to a multidimensional vector. Specific requested finger motions were thus detected from the forearm as residual kinetic vectors (RKVs). To decode RKVs, we developed a trainable filter derived from the pseudoinverse of the pressure response matrix. The utility of RKVs was tested on several subjects who expressed both afferent and efferent phantom limb activity. Results showed that amputees using the RKV approach could control at least 3 robotic fingers in near-real time.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Phillips, Sam L., James A. Flint and William Craelius (2002). RESIDUAL KINETIC VECTORS FOR PROSTHETIC CONTROL. Retrieved from https://hdl.handle.net/10161/2689.
Collections
Copyright 2002, 2005 and 2008, The University of New Brunswick.
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.