Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates.
Date
2018-06
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Brautigan, David L, and Shirish Shenolikar (2018). Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annual review of biochemistry, 87(1). pp. 921–964. 10.1146/annurev-biochem-062917-012332 Retrieved from https://hdl.handle.net/10161/18123.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Shirish Shenolikar
Protein phosphorylation controls a wide range of physiological processes in mammalian tissues. Phosphorylation state of cellular proteins is controlled by the opposing actions of protein kinases and phosphatases that are regulated by hormones, neurotransmitters, growth factors and other environmental cues. Our research attempts to understand the communication between protein kinases and phosphatases that dictates cellular protein phosphorylation and the cell's response to hormones. Over the last decade, our work has provided critical information about the role of protein phosphatase-1 (PP1) in controlling synaptic function, cell stress, gene expression and growth. We have generated a large repertoire of reagents to decipher PP1's role in signaling pathways in mammalian cells and tissues. Emerging evidence suggests that in many cells, PP1 activity is fine tuned by the protein, inhibitor-1 (I-1). A major focus of our research is to elucidate the role of I-1 in kinase-phosphatase cross-talk and impact of the altered I-1 gene expression seen in several human diseases. Our studies showed that recognition of cellular substrates by PP1 is also directed by its association with a variety of targeting subunits that are themselves also subject to physiological control. Thus, the overall focus of our research is to define the physiological mechanisms that regulate PP1 functions relevant to human health and disease.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.