An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection.

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

161
views
179
downloads

Citation Stats

Abstract

While tuberculosis susceptibility has historically been ascribed to failed inflammation, it is now known that an excess of leukotriene A4 hydrolase (LTA4H), which catalyzes the final step in leukotriene B4 (LTB4) synthesis, produces a hyperinflammatory state and tuberculosis susceptibility. Here we show that the LTB4-inactivating enzyme leukotriene B4 dehydrogenase/prostaglandin reductase 1 (LTB4DH/PTGR1) restricts inflammation and independently confers resistance to tuberculous infection. LTB4DH overexpression counters the susceptibility resulting from LTA4H excess while ltb4dh-deficient animals can be rescued pharmacologically by LTB4 receptor antagonists. These data place LTB4DH as a key modulator of TB susceptibility and suggest new tuberculosis therapeutic strategies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0067828

Publication Info

Tobin, David M, Francisco J Roca, John P Ray, Dennis C Ko and Lalita Ramakrishnan (2013). An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection. PLoS One, 8(7). p. e67828. 10.1371/journal.pone.0067828 Retrieved from https://hdl.handle.net/10161/11197.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Tobin

David M. Tobin

Professor of Molecular Genetics and Microbiology

Tuberculosis: Mycobacterial Pathogenesis and Host Susceptibility

Tuberculosis kills 1.5 million people annually. Our laboratory aims to understand the intricate interplay between mycobacteria and their hosts using a combination of model organism genetics, human genetics, pharmacology and high-resolution microscopy. By identifying key pathways utilized by the infecting bacteria and the host innate immune system, we hope to discover new therapeutic targets and interventions to combat this enduringly destructive disease.

Using a Mycobacterium/zebrafish model, we have identified new host susceptibility loci for tuberculosis. Zebrafish are natural hosts to Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex. Because zebrafish embryos and larvae are optically transparent, we are able to visualize the complex details of mycobacterial pathogenesis in whole, live animals. The facile genetics of the zebrafish allow us to map and positionally clone affected host susceptibility genes. In addition, zebrafish larvae are remarkably permeable to small molecules, providing a platform for whole-animal pharmacological manipulation of specific host immune responses.

We have identified novel pathways that modulate susceptibility to tuberculosis. We have shown that genes identified in the zebrafish model are also important in human tuberculosis. We find robust associations of human variants in a specific eicosanoid pathway with susceptibility to both tuberculosis and leprosy.

We have active collaborations in both Vietnam and Guatemala. In Guatemala, we are working with the Clínica Familiar Luis Angel García and the Asociación de Salud Integral to support projects involving HIV-infected patients and to understand the dynamics of TB transmission in Central America.

Ko

Dennis Ko

Associate Professor in Molecular Genetics and Microbiology

Using Pathogens to Decipher Genetic Variation Connecting Cell Biology and Disease Susceptibility
Despite improvements in public health, advancements in vaccines, and the development of many classes of antibiotics, infectious disease is still responsible for over a quarter of all deaths worldwide. However, even for the most devastating of pandemics, individuals demonstrate a large variability in the severity of infection. The long-term goal of the lab is to understand the genetic basis for differences in susceptibility to infection and related inflammatory disorders. We approach this question through a combination of experimental and computational approaches that combine high-throughput cell biology with quantitative human genetics. The identified genetic differences serve as the starting point for exploring new cell biology and human disease susceptibility genes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.