Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
Abstract
We use methods from exterior differential systems (EDS) to develop a geometric theory of scalar, first-order Lagrangian functionals and their associated Euler-Lagrange PDEs, subject to contact transformations. The first chapter contains an introduction of the classical Poincare-Cartan form in the context of EDS, followed by proofs of classical results, including a solution to the relevant inverse problem, Noether's theorem on symmetries and conservation laws, and several aspects of minimal hypersurfaces. In the second chapter, the equivalence problem for Poincare-Cartan forms is solved, giving the differential invariants of such a form, identifying associated geometric structures (including a family of affine hypersurfaces), and exhibiting certain "special" Euler-Lagrange equations characterized by their invariants. In the third chapter, we discuss a collection of Poincare-Cartan forms having a naturally associated conformal geometry, and exhibit the conservation laws for non-linear Poisson and wave equations that result from this. The fourth and final chapter briefly discusses additional PDE topics from this viewpoint--Euler-Lagrange PDE systems, higher order Lagrangians and conservation laws, identification of local minima for Lagrangian functionals, and Backlund transformations. No previous knowledge of exterior differential systems or of the calculus of variations is assumed.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke
Robert Bryant
My research concerns problems in the geometric theory of partial differential equations. More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy.
Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems. Because of their built-in invariance properties, these systems often have special features that make them difficult to treat by the standard tools of analysis, and so my approach uses ideas and techniques from the theory of exterior differential systems, a collection of tools for analyzing such PDE systems that treats them in a coordinate-free way, focusing instead on their properties that are invariant under diffeomorphism or other transformations.
I’m particularly interested in geometric structures constrained by natural conditions, such as Riemannian manifolds whose curvature tensor satisfies some identity or that supports some additional geometric structure, such as a parallel differential form or other geometric structures that satisfy some partial integrability conditions and in constructing examples of such geometric structures, such as Finsler metrics with constant flag curvature.I am also the Director of the Simons Collaboration Special Holonomy in Geometry, Analysis, and Physics, and a considerable focus of my research and that of my students is directed towards problems in this area.
Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.