Life and death in paradise.

Loading...
Thumbnail Image

Date

2002-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

62
views
21
downloads

Citation Stats

Abstract

Over 500 researchers participated in a recent American Association for Cancer Research special conference, entitled "Apoptosis and Cancer: Basic Mechanisms and Therapeutic Opportunities in the Post-Genomic Era" (February 13-17, 2002) in sunny Hawaii (Hilton Waikoloa village, Kona, Hawaii). The meeting participants presented the most recent findings on the mechanisms regulating cell death in cancer. In the past decade, apoptosis research has undergone a quantum leap, metamorphosing from a descriptive, phenomenological discipline into a molecularly defined, highly complex signalling field. This transformation was highlighted in the conference's opening talk by meeting co-organizer, John Reed (The Burnham Institute, La Jolla, CA). Reed and colleagues used published protein functional information and bio-informatic mining of the available human genome databases to tabulate the number of human proteins predicted to be involved in regulating apoptosis. The list includes 11 catalytically active caspases, 26 CARD (caspase associated recruitment domain)-, 32 DD (death domain)-, 12 DED (death effector domain)-, 8 BIR (baculovirus inhibitor of apoptosis protein region)-, 24 BH (Bcl-2 homology)-, and 34 PAAD/PYD (pyrin/PAAD)-containing sequences.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/ncb0602-e159

Publication Info

Gozani, Or, Michael Boyce, Lina Yoo, Philip Karuman and Junying Yuan (2002). Life and death in paradise. Nature cell biology, 4(6). pp. E159–E162. 10.1038/ncb0602-e159 Retrieved from https://hdl.handle.net/10161/19704.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Boyce

Michael Scott Boyce

Associate Professor of Biochemistry

The Boyce Lab studies mammalian cell signaling through protein glycosylation. For the latest news, project information and publications from our group, please visit our web site at http://www.boycelab.org or follow us on Twitter at https://twitter.com/BoyceLab.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.