Resistance of African tropical forests to an extreme climate anomaly.

Abstract

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1073/pnas.2003169118

Publication Info

Bennett, Amy C, Greta C Dargie, Aida Cuni-Sanchez, John Tshibamba Mukendi, Wannes Hubau, Jacques M Mukinzi, Oliver L Phillips, Yadvinder Malhi, et al. (2021). Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 118(21). pp. e2003169118–e2003169118. 10.1073/pnas.2003169118 Retrieved from https://hdl.handle.net/10161/24286.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Poulsen

John Poulsen

Associate Professor of Tropical Ecology

John Poulsen is an ecologist with broad interests in the maintenance and regeneration of tropical forests and conservation of biodiversity. His research has focused on the effects of anthropogenic disturbance, such as logging and hunting, on forest structure and diversity, abundance of tropical animals, and ecological processes. He has conducted most of his research in Central Africa, where he has also worked as a conservation manager, directing projects to sustainably manage natural resources in and around parks and reserves, and as the coordinator of government programs to develop low emissions strategies and quantify and monitor forest carbon.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.