Limiting Behaviors of High Dimensional Stochastic Spin Ensemble

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

120
views
33
downloads

Abstract

Lattice spin models in statistical physics are used to understand magnetism. Their Hamiltonians are a discrete form of a version of a Dirichlet energy, signifying a relationship to the Harmonic map heat flow equation. The Gibbs distribution, defined with this Hamiltonian, is used in the Metropolis-Hastings (M-H) algorithm to generate dynamics tending towards an equilibrium state. In the limiting situation when the inverse temperature is large, we establish the relationship between the discrete M-H dynamics and the continuous Harmonic map heat flow associated with the Hamiltonian. We show the convergence of the M-H dynamics to the Harmonic map heat flow equation in two steps: First, with fixed lattice size and proper choice of proposal size in one M-H step, the M-H dynamics acts as gradient descent and will be shown to converge to a system of Langevin stochastic differential equations (SDE). Second, with proper scaling of the inverse temperature in the Gibbs distribution and taking the lattice size to infinity, it will be shown that this SDE system converges to the deterministic Harmonic map heat flow equation. Our results are not unexpected, but show remarkable connections between the M-H steps and the SDE Stratonovich formulation, as well as reveal trajectory-wise out of equilibrium dynamics to be related to a canonical PDE system with geometric constraints.

Department

Description

Provenance

Citation

Scholars@Duke

Mattingly

Jonathan Christopher Mattingly

Kimberly J. Jenkins Distinguished University Professor of New Technologies

Jonathan Christopher  Mattingly grew up in Charlotte, NC where he attended Irwin Ave elementary and Charlotte Country Day.  He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a Professor of Mathematics and of Statistical Science.

His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.

Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections. 

He is the recipient of a Sloan Fellowship and a PECASE CAREER award.  He is also a fellow of the IMS and the AMS. He was awarded the Defender of Freedom award by  Common Cause for his work on Quantifying Gerrymandering.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.