A cost-effective method for reducing soil disturbance-induced errors in static chamber measurement of wetland methane emissions

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


© 2015, Springer Science+Business Media Dordrecht. Static chambers used for sampling methane (CH 4 ) in wetlands are highly sensitive to soil disturbance. Temporary compression around chambers during sampling can inflate the initial chamber CH 4 headspace concentration and/or lead to generation of non-linear, unreliable flux estimates that must be discarded. In this study, we tested an often-used rubber gasket (RG)-sealed static chamber against a water-filled gutter (WFG) seal design that could be set up and sampled from a distance of 2 m with a newly designed remote rod sampling system to reduce soil disturbance. Compared to conventional RG design, our remotely sampled static chambers reduced the chance of detecting inflated initial CH 4 concentrations ( > 3.6 ppm) from 66 to 6 % and nearly doubled the proportion of robust linear regressions (r 2   >  0.9) from 45 to 86 %. Importantly, the remote rod sampling system allows for more accurate and reliable CH 4 sampling without costly boardwalk construction. This paper presents results demonstrating that the remote rod sampling system combined with WFG static chambers improves CH 4 data reliability by reducing initial gas measurement variability due to chamber disturbance when tested on a mineral soil-restored wetland in Charles City County, Virginia, USA.






Published Version (Please cite this version)


Publication Info

Winton, RS, and CJ Richardson (2016). A cost-effective method for reducing soil disturbance-induced errors in static chamber measurement of wetland methane emissions. Wetlands Ecology and Management, 24(4). pp. 419–425. 10.1007/s11273-015-9468-5 Retrieved from https://hdl.handle.net/10161/15702.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Curtis J. Richardson

Research Professor of Resource Ecology in the Division of Environmental Science and Policy

Curtis J. Richardson is Professor of Resource Ecology and founding Director of the Duke University Wetland Center in the Nicholas School of the Environment. Dr. Richardson earned his degrees from the State University of New York and the University of Tennessee.

His research interests in applied ecology focus on long-term ecosystem response to large-scale perturbations such as climate change, toxic materials, trace metals, flooding, or nutrient additions. He has specific interests in phosphorus nutrient dynamics in wetlands and the effects of environmental stress on plant communities and ecosystem functions and services. The objectives of his research are to utilize ecological principles to develop new approaches to environmental problem solving. The goal of his research is to provide predictive models and approaches to aid in the management of ecosystems.

Recent research activities: 1) wetland restoration of plant communities and its effects on regional water quality and nutrient biogeochemical cycles, 2) the development of ecosystem metrics as indices of wetland restoration success, 3) the effects of nanomaterial on wetland and stream ecosystem processes, 4) the development of ecological thresholds along environmental gradients, 5) wetland development trends and restoration in coastal southeastern United States, 6) the development of an outdoor wetland and stream research and teaching laboratory on Duke Forest, 7) differential nutrient limitation (DNL) as a mechanism to overcome N or P limitations across trophic levels in wetland ecosystems, and 8) carbon sequestration in coastal North Carolina pocosins.

Richardson oversees the main analytical lab in NSOE, which is open to students and faculty. Dr. Richardson has been listed in Who's Who in Science™ annually since 1989 and was elected President of the Society of Wetland Scientists in 1987-88. He has served on many editorial review committees for peer-reviewed scientific journals, and he is a past Chair of the Nicholas School Division of Environmental Sciences and Policy. Dr. Richardson is a Fellow of the American Association for the Advancement of Science, the Society of Wetland Scientists, and the Soil Science Society of America.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.