Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability.

Abstract

BACKGROUND: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. METHODS: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. RESULTS: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). CONCLUSION: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s13075-016-1215-7

Publication Info

Huffman, Kim M, Ryan Jessee, Brian Andonian, Brittany N Davis, Rachel Narowski, Janet L Huebner, Virginia B Kraus, Julie McCracken, et al. (2017). Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res Ther, 19(1). p. 12. 10.1186/s13075-016-1215-7 Retrieved from https://hdl.handle.net/10161/13703.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Huffman

Kim Marie Huffman

Associate Professor of Medicine

Determining the role of physical activity in modulating health outcomes (cardiovascular disease risk) in persons with rheumatologic diseases (rheumatoid arthritis, gout, osteoarthritis)

Integrating clinical rheumatology, basic immunology, metabolism, and exercise science in order to reduce morbidity in individuals with arthritis

Evaluating relationships between circulating and intra-muscular metabolic intermediates and insulin resistance in sedentary as well as individuals engaging in regular exercise

Addressing the role of physical activity in modulating inflammation, metabolism, and functional health in aging populations

Gilmore

Brian F Gilmore

Assistant Professor of Surgery
Koves

Timothy Robert Koves

Associate Professor in Medicine

My research is focused on 1) understanding metabolic perturbations that occur in subpopulations of skeletal muscle mitochondria in response to a chronic high lipid environment, 2) identifying specific metabolites of lipid-induced mitochondrial stress that contribute to skeletal muscle insulin resistance and type II diabetes, and 3) understanding how mitochondrial adaptations in response to exercise confer protection against lipid-induced mitochondrial dysfunction.

Muoio

Deborah Marie Muoio

George Barth Geller Distinguished Professor of Cardiovascular Disease

Deb Muoio is professor in the Departments of Medicine and Pharmacology & Cancer Biology, George Barth Geller Distinguished Professor of Cardiovascular Disease, and Associate Director of the Duke Molecular Physiology Institute (DMPI). She is viewed nationally and internationally as a leader in the fields of diabetes, obesity, exercise physiology, and mitochondrial energy metabolism. Her laboratory investigates mechanisms of metabolic regulation, with emphasis on molecular events that link lifestyle factors such as over nutrition and physical inactivity to metabolic disorders, including obesity, diabetes, and heart failure. Her program features a translational approach that combines work in animal and cell-based models with human studies, using genetic engineering, molecular biology and mass spectrometry-based metabolomics and proteomics as tools to understand the interplay between mitochondrial physiology and cardiometabolic health. Her laboratory developed a sophisticated platform for deep and comprehensive assessment of mitochondrial bioenergetics and energy transduction. Her team is integrating this new platform with metabolomics, proteomics, and metabolic flux analysis to gain insights into mechanisms by which mitochondria modulate insulin action and metabolic resilience. She has published more than 120 papers in prominent journals such as Cell, Cell Metabolism, Circulation, Circulation Research, Diabetes, and JCI Insight. Dr. Muoio’s laboratory has enjoyed longstanding support from the NIDDK and NHLBI.

PhD, University of North Carolina, Chapel Hill, NC

Kraus

William Erle Kraus

Richard and Pat Johnson University Distinguished Professor

My training, expertise and research interests range from human integrative physiology and genetics to animal exercise models to cell culture models of skeletal muscle adaptation to mechanical stretch. I am trained clinically as an internist and preventive cardiologist, with particular expertise in preventive cardiology and cardiac rehabilitation.  My research training spans molecular biology and cell culture, molecular genetics, and integrative human exercise physiology and metabolism. I practice as a preventive cardiologist with a focus on cardiometabolic risk and exercise physiology for older athletes.  My research space has both a basic wet laboratory component and a human integrative physiology one.

One focus of our work is an integrative physiologic examination of exercise effects in human subjects in clinical studies of exercise training in normal individuals, in individuals at risk of disease (such as pre-diabetes and metabolic syndrome; STRRIDE), and in individuals with disease (such as coronary heart disease, congestive heart failure and cancer).

A second focus of my research group is exploration of genetic determinates of disease risk in human subjects.  We conduct studies of early onset cardiovascular disease (GENECARD; CATHGEN), congestive heart failure (HF-ACTION), peripheral arterial disease (AMNESTI), and metabolic syndrome.  We are exploring analytic models of predicting disease risk using established and innovative statistical methodology.

A third focus of my group’s work is to understand the cellular signaling mechanisms underlying the normal adaptive responses of skeletal muscle to physiologic stimuli, such as occur in exercise conditioning, and to understand the abnormal maladaptive responses that occur in response to pathophysiologic stimuli, such as occur in congestive heart failure, aging and prolonged exposure to microgravity.

Recently we have begun to investigate interactions of genes and lifestyle interventions on cardiometabolic outcomes.  We have experience with clinical lifestyle intervention studies, particularly the contributions of genetic variants to interventions responses.  We call this Lifestyle Medicopharmacogenetics.

KEY WORDS:

exercise, skeletal muscle, energy metabolism, cell signaling, gene expression, cell stretch, heart failure, aging, spaceflight, human genetics, early onset cardiovascular disease, lifestyle medicine


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.