Characterizing Azobenzene Disperse Dyes in Commercial Mixtures and Children’s Polyester Clothing
Date
2021-05
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Overdahl, Kirsten E, David Gooden, Benjamin Bobay, Gordon J Getzinger, Heather M Stapleton and P Lee Ferguson (2021). Characterizing Azobenzene Disperse Dyes in Commercial Mixtures and Children’s Polyester Clothing. Environmental Pollution. pp. 117299–117299. 10.1016/j.envpol.2021.117299 Retrieved from https://hdl.handle.net/10161/23213.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
David Gooden
Benjamin Bobay
I am the Assistant Director of the Duke University NMR Center and an Assistant Professor in the Duke Radiology Department. I was originally trained as a structural biochemist with an emphasis on utilizing NMR and continue to use this technique daily helping collaborators characterize protein structures and small molecules through a diverse set of NMR experiments. Through the structural characterization of various proteins, from both planta and eukaryotes, I have developed a robust protocol of utilizing computational biology for describing binding events, mutations, post-translations modifications (PTMs), and/or general behavior within in silico solution scenarios. I have utilized these techniques in collaborations ranging from plant pathologists at the Swammerdam Institute for Life Sciences department at the University of Amsterdam to biomedical engineers at North Carolina State University to professors in the Pediatrics department at Duke University. These studies have centered around the structural and functional consequences of PTMs (such as phosphorylation), mutation events, truncation of multi-domain proteins, dimer pulling experiments, to screening of large databases of ligands for potential binding events. Through this combination of NMR and computational biology I have amassed 50 peer-reviewed published articles and countless roles on scientific projects, as well as the development of several tutorials concerning the creation of ligand databases and high-throughput screening of large databases utilizing several different molecular dynamic and computational docking programs.
Heather M. Stapleton
Professor Heather Stapleton is an environmental chemist and exposure scientist in the Nicholas School of the Environment at Duke University. Her research interests focus on identification of halogenated and organophosphate chemicals in building materials, furnishings and consumer products, and estimation of human exposure, particularly in vulnerable populations such as pregnant women and children. Her laboratory utilizes mass spectrometry, including targeted and nontargeted approaches, to characterize chemical burdens in both environmental samples and biological tissues to support environmental health research. Currently she serves as the Director for the Duke Superfund Research Center, and Director of the Duke Environmental Analysis Laboratory, which is part of NIH’s Human Health Environmental Analysis Resource.
P. Lee Ferguson
Dr. Ferguson is an Environmental Analytical Chemist who joined Duke in 2009 after six years as an assistant professor in the Department of Chemistry & Biochemistry at the University of South Carolina.
Research in the Ferguson laboratory is focused on development and application of analytical methods for measuring organic pollutants in the environment. Specifically, a major thrust of research in the lab involves the application of high resolution mass spectrometry to detect, identify, and quantify emerging contaminants in wastewater and drinking water. His recent work has centered on the development of non-targeted analysis workflows and methods, assessment of polyfluorinated alkyl substances in water and wastewater, and leaching and bioaccessibility of polymer-associated chemicals from microplastic particles in the aquatic environment. He has published over 100 peer-reviewed chapters and journal articles, serves on advisory councils for several organizations focused on emerging pollutants in the environment, and has testified before the U.S. Senate on environmental health concerns related to nanotechnology. In North Carolina, he helped lead the formation of the NC PFAS Testing Network to assess statewide drinking water contamination from PFAS chemicals.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.