An asymptotic preserving method for transport equations with oscillatory scattering coefficients

Loading...
Thumbnail Image

Date

2017-04-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

159
views
120
downloads

Abstract

We design a numerical scheme for transport equations with oscillatory periodic scattering coefficients. The scheme is asymptotic preserving in the diffusion limit as Knudsen number goes to zero. It also captures the homogenization limit as the length scale of the scattering coefficient goes to zero. The proposed method is based on the construction of multiscale finite element basis and a Galerkin projection based on the even-odd decomposition. The method is analyzed in the asymptotic regime, as well as validated numerically.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor of Mathematics

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.