Optimal processing of photoreceptor signals is required to maximize behavioural sensitivity.
Date
2010-06
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The sensitivity of receptor cells places a fundamental limit upon the sensitivity of sensory systems. For example, the signal-to-noise ratio of sensory receptors has been suggested to limit absolute thresholds in the visual and auditory systems. However, the necessity of optimally processing sensory receptor signals for behaviour to approach this limit has received less attention. We investigated the behavioural consequences of increasing the signal-to-noise ratio of the rod photoreceptor single-photon response in a transgenic mouse, the GCAPs-/- knockout. The loss of fast Ca2+ feedback to cGMP synthesis in phototransduction for GCAPs-/- mice increases the magnitude of the rod single-photon response and dark noise, with the increase in size of the single-photon response outweighing the increase in noise. Surprisingly, despite the increased rod signal-to-noise ratio, behavioural performance for GCAPs-/- mice was diminished near absolute visual threshold. We demonstrate in electrophysiological recordings that the diminished performance compared to wild-type mice is explained by poorly tuned postsynaptic processing of the rod single-photon response at the rod bipolar cell. In particular, the level of postsynaptic saturation in GCAPs-/- rod bipolar cells is not sufficient to eliminate rod noise, and degrades the single-photon response signal-to-noise ratio. Thus, it is critical for retinal processing to be optimally tuned near absolute threshold; otherwise the visual system fails to utilize fully the signals present in the rods.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Okawa, Haruhisa, K Joshua Miyagishima, A Cyrus Arman, James B Hurley, Greg D Field and Alapakkam P Sampath (2010). Optimal processing of photoreceptor signals is required to maximize behavioural sensitivity. The Journal of physiology, 588(Pt 11). pp. 1947–1960. 10.1113/jphysiol.2010.188573 Retrieved from https://hdl.handle.net/10161/17858.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Greg D. Field
My laboratory studies how the retina processes visual scenes and transmits this information to the brain. We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.