Validation of a host response test to distinguish bacterial and viral respiratory infection.

Abstract

BACKGROUND:Distinguishing bacterial and viral respiratory infections is challenging. Novel diagnostics based on differential host gene expression patterns are promising but have not been translated to a clinical platform nor extensively tested. Here, we validate a microarray-derived host response signature and explore performance in microbiology-negative and coinfection cases. METHODS:Subjects with acute respiratory illness were enrolled in participating emergency departments. Reference standard was an adjudicated diagnosis of bacterial infection, viral infection, both, or neither. An 87-transcript signature for distinguishing bacterial, viral, and noninfectious illness was measured from peripheral blood using RT-PCR. Performance characteristics were evaluated in subjects with confirmed bacterial, viral, or noninfectious illness. Subjects with bacterial-viral coinfection and microbiologically-negative suspected bacterial infection were also evaluated. Performance was compared to procalcitonin. FINDINGS:151 subjects with microbiologically confirmed, single-etiology illness were tested, yielding AUROCs 0•85-0•89 for bacterial, viral, and noninfectious illness. Accuracy was similar to procalcitonin (88% vs 83%, p = 0•23) for bacterial vs. non-bacterial infection. Whereas procalcitonin cannot distinguish viral from non-infectious illness, the RT-PCR test had 81% accuracy in making this determination. Bacterial-viral coinfection was subdivided. Among 19 subjects with bacterial superinfection, the RT-PCR test identified 95% as bacterial, compared to 68% with procalcitonin (p = 0•13). Among 12 subjects with bacterial infection superimposed on chronic viral infection, the RT-PCR test identified 83% as bacterial, identical to procalcitonin. 39 subjects had suspected bacterial infection; the RT-PCR test identified bacterial infection more frequently than procalcitonin (82% vs 64%, p = 0•02). INTERPRETATION:The RT-PCR test offered similar diagnostic performance to procalcitonin in some subgroups but offered better discrimination in others such as viral vs. non-infectious illness and bacterial/viral coinfection. Gene expression-based tests could impact decision-making for acute respiratory illness as well as a growing number of other infectious and non-infectious diseases.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ebiom.2019.09.040

Publication Info

Lydon, Emily C, Ricardo Henao, Thomas W Burke, Mert Aydin, Bradly P Nicholson, Seth W Glickman, Vance G Fowler, Eugenia B Quackenbush, et al. (2019). Validation of a host response test to distinguish bacterial and viral respiratory infection. EBioMedicine. 10.1016/j.ebiom.2019.09.040 Retrieved from https://hdl.handle.net/10161/19461.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

McClain

Micah Thomas McClain

Associate Professor of Medicine
Ginsburg

Geoffrey Steven Ginsburg

Adjunct Professor in the Department of Medicine

Dr. Geoffrey S. Ginsburg's research interests are in the development of novel paradigms for developing and translating genomic information into medical practice and the integration of personalized medicine into health care.

Woods

Christopher Wildrick Woods

Wolfgang Joklik Distinguished Professor of Global Health

1. Emerging Infections
2. Global Health
3. Epidemiology of infectious diseases
4. Clinical microbiology and diagnostics
5. Bioterrorism Preparedness
6. Surveillance for communicable diseases
7. Antimicrobial resistance

Tsalik

Ephraim Tsalik

Adjunct Associate Professor in the Department of Medicine

My research at Duke has focused on understanding the dynamic between host and pathogen so as to discover and develop host-response markers that can diagnose and predict health and disease.  This new and evolving approach to diagnosing illness has the potential to significantly impact individual as well as public health considering the rise of antibiotic resistance.

With any potential infectious disease diagnosis, it is difficult, if not impossible, to determine at the time of presentation what the underlying cause of illness is.  For example, acute respiratory illness is among the most frequent reasons for patients to seek care. These symptoms, such as cough, sore throat, and fever may be due to a bacterial infection, viral infection, both, or a non-infectious condition such as asthma or allergies.  Given the difficulties in making the diagnosis, most patients are inappropriately given antibacterials.  However, each of these etiologies (bacteria, virus, or something else entirely) leaves a fingerprint embedded in the host’s response. We are very interested in finding those fingerprints and exploiting them to generate new approaches to understand, diagnose, and manage disease.

These principles also apply to sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Just as with acute respiratory illness, it is often difficult to identify whether infection is responsible for a patient’s critical illness.  We have embarked on a number of research programs that aim to better identify sepsis; define sepsis subtypes that can be used to guide future clinical research; and to better predict sepsis outcomes.  These efforts have focused on many systems biology modalities including transcriptomics, miRNA, metabolomics, and proteomics.  Consequently, our Data Science team has utilized these highly complex data to develop new statistical methods, furthering both the clinical and statistical research communities.

These examples are just a small sampling of the breadth of research Dr. Tsalik and his colleagues have conducted.  

In April 2022, Dr. Tsalik has joined Danaher Diagnostics as the VP and Chief Scientific Officer for Infectious Disease, where he is applying this experience in biomarkers and diagnostics to shape the future of diagnostics in ID. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.