Predicting the combined occurrence of poor clinical and radiographic outcomes following cervical deformity corrective surgery.

Abstract

OBJECTIVE:Cervical deformity (CD) correction is clinically challenging. There is a high risk of developing complications with these highly complex procedures. The aim of this study was to use baseline demographic, clinical, and surgical factors to predict a poor outcome following CD surgery. METHODS:The authors performed a retrospective review of a multicenter prospective CD database. CD was defined as at least one of the following: cervical kyphosis (C2-7 Cobb angle > 10°), cervical scoliosis (coronal Cobb angle > 10°), C2-7 sagittal vertical axis (cSVA) > 4 cm, or chin-brow vertical angle (CBVA) > 25°. Patients were categorized based on having an overall poor outcome or not. Health-related quality of life measures consisted of Neck Disability Index (NDI), EQ-5D, and modified Japanese Orthopaedic Association (mJOA) scale scores. A poor outcome was defined as having all 3 of the following categories met: 1) radiographic poor outcome: deterioration or severe radiographic malalignment 1 year postoperatively for cSVA or T1 slope-cervical lordosis mismatch (TS-CL); 2) clinical poor outcome: failing to meet the minimum clinically important difference (MCID) for NDI or having a severe mJOA Ames modifier; and 3) complications/reoperation poor outcome: major complication, death, or reoperation for a complication other than infection. Univariate logistic regression followed by multivariate regression models was performed, and internal validation was performed by calculating the area under the curve (AUC). RESULTS:In total, 89 patients with CD were included (mean age 61.9 years, female sex 65.2%, BMI 29.2 kg/m2). By 1 year postoperatively, 18 (20.2%) patients were characterized as having an overall poor outcome. For radiographic poor outcomes, patients' conditions either deteriorated or remained severe for TS-CL (73% of patients), cSVA (8%), horizontal gaze (34%), and global SVA (28%). For clinical poor outcomes, 80% and 60% of patients did not reach MCID for EQ-5D and NDI, respectively, and 24% of patients had severe symptoms (mJOA score 0-11). For the complications/reoperation poor outcome, 28 patients experienced a major complication, 11 underwent a reoperation, and 1 had a complication-related death. Of patients with a poor clinical outcome, 75% had a poor radiographic outcome; 35% of poor radiographic and 37% of poor clinical outcome patients had a major complication. A poor outcome was predicted by the following combination of factors: osteoporosis, baseline neurological status, use of a transition rod, number of posterior decompressions, baseline pelvic tilt, T2-12 kyphosis, TS-CL, C2-T3 SVA, C2-T1 pelvic angle (C2 slope), global SVA, and number of levels in maximum thoracic kyphosis. The final model predicting a poor outcome (AUC 86%) included the following: osteoporosis (OR 5.9, 95% CI 0.9-39), worse baseline neurological status (OR 11.4, 95% CI 1.8-70.8), baseline pelvic tilt > 20° (OR 0.92, 95% CI 0.85-0.98), > 9 levels in maximum thoracic kyphosis (OR 2.01, 95% CI 1.1-4.1), preoperative C2-T3 SVA > 5.4 cm (OR 1.01, 95% CI 0.9-1.1), and global SVA > 4 cm (OR 3.2, 95% CI 0.09-10.3). CONCLUSIONS:Of all CD patients in this study, 20.2% had a poor overall outcome, defined by deterioration in radiographic and clinical outcomes, and a major complication. Additionally, 75% of patients with a poor clinical outcome also had a poor radiographic outcome. A poor overall outcome was most strongly predicted by severe baseline neurological deficit, global SVA > 4 cm, and including more of the thoracic maximal kyphosis in the construct.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3171/2019.7.spine18651

Publication Info

Horn, Samantha R, Peter G Passias, Cheongeun Oh, Virginie Lafage, Renaud Lafage, Justin S Smith, Breton Line, Neel Anand, et al. (2019). Predicting the combined occurrence of poor clinical and radiographic outcomes following cervical deformity corrective surgery. Journal of neurosurgery. Spine, 32(2). pp. 182–190. 10.3171/2019.7.spine18651 Retrieved from https://hdl.handle.net/10161/28180.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.