Oropharyngeal dysphagia may occur in late-onset Pompe disease, implicating bulbar muscle involvement.
Date
2013-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Late-onset Pompe disease (presenting after 12 months of age) often presents with limb-girdle and respiratory weakness, but oropharyngeal dysphagia has not been reported previously. A retrospective review of all late-onset Pompe disease patients evaluated in the neuromuscular clinic at Duke University Medical Center from 1999-2010 was performed. Twelve patients were identified and 3 had symptoms of oropharyngeal dysphagia. The medical record was reviewed, including the results of electromyography, videofluroscopic swallow examinations, and motor speech examination including instrumental assessment of lingual force with the Iowa Oral Performance Instrument. Oropharyngeal dysphagia was mild in two cases and severe in one. One of the two patients with mild severity demonstrated oral stage swallow signs; in the other, residual material was observed in the area of the cervical esophagus. In the patient with severe oropharyngeal dysphagia, both the oral and pharyngeal stages of swallowing were affected with penetration and aspiration documented. The degree of swallowing impairment appeared to correlate with overall physical strength and function. Oropharyngeal dysphagia may occur in patients with late-onset Pompe disease, implicating bulbar muscle involvement. Screening for symptoms of dysphagia may help reduce morbidity and mortality, while improving understanding of the late-onset Pompe disease phenotype. Further studies, including examination of the relationship between lingual weakness and oropharyngeal dysphagia, are warranted.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Hobson-Webb, Lisa D, Harrison N Jones and Priya S Kishnani (2013). Oropharyngeal dysphagia may occur in late-onset Pompe disease, implicating bulbar muscle involvement. Neuromuscular disorders : NMD, 23(4). pp. 319–323. 10.1016/j.nmd.2012.12.003 Retrieved from https://hdl.handle.net/10161/27311.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Lisa Deneen Hobson-Webb
Trained in neuromuscular medicine, my clinical career has focused on the care of patients with genetically mediated neuromuscular disorders, rare peripheral neuropathies, and immune-mediated nerve and muscle disorders and performing high quality electrodiagnostic testing (nerve conduction studies/electromyography). As a researcher, the core aim of my work is applying high resolution ultrasound in the care of patients with neuromuscular diseases. My early work focused on peripheral nerve and is now moving toward muscle imaging. My current research includes muscle ultrasound in late onset Pompe disease and peripheral nerve imaging in acute inflammatory demyelinating radiculoneuropathy. Since 2016, I have collaborated with Dr. Kathryn Nightingale’s biomedical engineering laboratory on applying shear wave imaging to diseases of the nerve and muscle. I am interested in clinical trials for neuromuscular disorders and novel technologies for diagnosing and monitoring neuromuscular disease.

Harrison N. Jones

Priya Sunil Kishnani
RESEARCH INTERESTS
A multidisciplinary approach to care of individuals with genetic disorders in conjunction with clinical and bench research that contributes to:
1) An understanding of the natural history and delineation of long term complications of genetic disorders with a special focus on liver Glycogen storage disorders, lysosomal disorders with a special focus on Pompe disease, Down syndrome and hypophosphatasia
2) ) The development of new therapies such as AAV gene therapy, enzyme therapy, small molecule and other approaches for genetic disorders through translational research
3) The development and execution of large multicenter trials to confirm safety and efficacy of potential therapies
4) Role of antibodies/immune response in patients on therapeutic proteins and AAV gene therapy
. Glycogen Storage Disease (GSD): We are actively following subjects with all types of Glycogen Storage Disease, with particular emphasis on types I, II, III, IV, VI and IX. The goal of the treatment team is to better determine the clinical phenotype and long term complications of these diseases. Attention to disease manifestations observed in adulthood, such as adenomas and risk for HCC, is of paramount importance in monitoring and treating these chronic illnesses. We are establishing clinical algorithms for managing adenomas, and the overall management of these patients including cardiac, bone, muscle and liver issues. A special focus is biomarker discovery, an Omics approach including metabolomics and immune phenotyping. We are working on AAV gene therapy for several hepatic GSDs
.Lysosomal Storage Disease: The Duke Lysosomal Storage Disease (LSD) treatment center follows and treats patients with Pompe, Gaucher, Fabry, Mucopolysaccharidosis, Niemann Pick, LAL-D and other LSD's. The Duke Metabolism Clinical Research Team is exploring many aspects of enzyme replacement therapy (ERT), including impact on different systems, differential response, and long term effects. Other symptomatic and treatment interventions for this category of diseases are also being explored in the context of clinical care.
. Pompe Disease: The care team has extensive experience in the care of infants and adults with Pompe disease and was instrumental in conducting clinical trials and the bench to bedside work that led to the 2006 FDA approval of alglucosidase alfa, the first treatment for this devastating disease. We are currently focusing on role of antibodies/immune response on patient outcome and role of immune modulation/immune suppression as an adjunct to ERT. Our team is also working on AAV gene therapy for Pompe disease. A focus is on newborn screening (NBS) and understanding the clinical phenotype and management approaches for babies identified via NBS
. Hypophosphatasia: We follow a large cohort of patients with HPP. The goal is to understand the features of the disease beyond bone disease, development of biomarkers, role of ERT and immune responses in HPP
. Neuromuscular disorders: We are collaborating with neurologists, cardiologists and neuromuscular physicians to serve as a treatment site for clinical trials in these diseases. We are currently involved in trials of DMD and are working closely on setting up collaborations for studies in SMA.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.