Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.

dc.contributor.author

Li, Xihao

dc.contributor.author

Quick, Corbin

dc.contributor.author

Zhou, Hufeng

dc.contributor.author

Gaynor, Sheila M

dc.contributor.author

Liu, Yaowu

dc.contributor.author

Chen, Han

dc.contributor.author

Selvaraj, Margaret Sunitha

dc.contributor.author

Sun, Ryan

dc.contributor.author

Dey, Rounak

dc.contributor.author

Arnett, Donna K

dc.contributor.author

Bielak, Lawrence F

dc.contributor.author

Bis, Joshua C

dc.contributor.author

Blangero, John

dc.contributor.author

Boerwinkle, Eric

dc.contributor.author

Bowden, Donald W

dc.contributor.author

Brody, Jennifer A

dc.contributor.author

Cade, Brian E

dc.contributor.author

Correa, Adolfo

dc.contributor.author

Cupples, L Adrienne

dc.contributor.author

Curran, Joanne E

dc.contributor.author

de Vries, Paul S

dc.contributor.author

Duggirala, Ravindranath

dc.contributor.author

Freedman, Barry I

dc.contributor.author

Göring, Harald HH

dc.contributor.author

Guo, Xiuqing

dc.contributor.author

Haessler, Jeffrey

dc.contributor.author

Kalyani, Rita R

dc.contributor.author

Kooperberg, Charles

dc.contributor.author

Kral, Brian G

dc.contributor.author

Lange, Leslie A

dc.contributor.author

Manichaikul, Ani

dc.contributor.author

Martin, Lisa W

dc.contributor.author

McGarvey, Stephen T

dc.contributor.author

Mitchell, Braxton D

dc.contributor.author

Montasser, May E

dc.contributor.author

Morrison, Alanna C

dc.contributor.author

Naseri, Take

dc.contributor.author

O'Connell, Jeffrey R

dc.contributor.author

Palmer, Nicholette D

dc.contributor.author

Peyser, Patricia A

dc.contributor.author

Psaty, Bruce M

dc.contributor.author

Raffield, Laura M

dc.contributor.author

Redline, Susan

dc.contributor.author

Reiner, Alexander P

dc.contributor.author

Reupena, Muagututi'a Sefuiva

dc.contributor.author

Rice, Kenneth M

dc.contributor.author

Rich, Stephen S

dc.contributor.author

Sitlani, Colleen M

dc.contributor.author

Smith, Jennifer A

dc.contributor.author

Taylor, Kent D

dc.contributor.author

Vasan, Ramachandran S

dc.contributor.author

Willer, Cristen J

dc.contributor.author

Wilson, James G

dc.contributor.author

Yanek, Lisa R

dc.contributor.author

Zhao, Wei

dc.contributor.author

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Lipids Working Group

dc.contributor.author

Rotter, Jerome I

dc.contributor.author

Natarajan, Pradeep

dc.contributor.author

Peloso, Gina M

dc.contributor.author

Li, Zilin

dc.contributor.author

Lin, Xihong

dc.date.accessioned

2024-02-01T17:27:30Z

dc.date.available

2024-02-01T17:27:30Z

dc.date.issued

2023-01

dc.description.abstract

Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.

dc.identifier

10.1038/s41588-022-01225-6

dc.identifier.issn

1061-4036

dc.identifier.issn

1546-1718

dc.identifier.uri

https://hdl.handle.net/10161/30073

dc.language

eng

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

Nature genetics

dc.relation.isversionof

10.1038/s41588-022-01225-6

dc.rights.uri

https://creativecommons.org/licenses/by-nc/4.0

dc.subject

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Lipids Working Group

dc.subject

Lipids

dc.subject

Phenotype

dc.subject

Genome-Wide Association Study

dc.subject

Whole Genome Sequencing

dc.subject

Exome Sequencing

dc.title

Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.

dc.type

Journal article

pubs.begin-page

154

pubs.end-page

164

pubs.issue

1

pubs.organisational-group

Duke

pubs.organisational-group

Sanford School of Public Policy

pubs.organisational-group

School of Medicine

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Molecular Genetics and Microbiology

pubs.organisational-group

Medicine

pubs.organisational-group

Pathology

pubs.organisational-group

Medicine, Cardiology

pubs.organisational-group

Medicine, Hematology

pubs.organisational-group

Medicine, Nephrology

pubs.organisational-group

Duke Cancer Institute

pubs.organisational-group

Institutes and Provost's Academic Units

pubs.organisational-group

University Institutes and Centers

pubs.organisational-group

Duke Global Health Institute

pubs.organisational-group

Duke Institute for Brain Sciences

pubs.organisational-group

Duke Molecular Physiology Institute

pubs.organisational-group

Center for Child and Family Policy

pubs.organisational-group

Population Health Sciences

pubs.publication-status

Published

pubs.volume

55

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studie.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format