Electron-Ion Collider: The next QCD frontier: Understanding the glue that binds us all
Date
2016-09-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
© 2016, The Author(s). This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Accardi, A, JL Albacete, M Anselmino, N Armesto, EC Aschenauer, A Bacchetta, D Boer, WK Brooks, et al. (2016). Electron-Ion Collider: The next QCD frontier: Understanding the glue that binds us all. European Physical Journal A, 52(9). 10.1140/epja/i2016-16268-9 Retrieved from https://hdl.handle.net/10161/19103.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Haiyan Gao
Prof. Gao's research focuses on understanding the structure of the nucleon in terms of quark and gluon degrees of freedom of Quantum Chromodynamics (QCD), search for QCD exotics, and fundamental symmetry studies at low energy to search for new physics beyond the Standard Model of electroweak interactions. Most recently, her group's studies of the structure of the nucleon have been focusing on a precision measurement of the proton (see her group's 2019 Nature paper on this topic) and deuteron charge radii to elucidate on the proton and the deuteron charge radius puzzles, and on imaging the three-dimensional structure of the nucleon in momentum space through the extraction of transverse momentum dependent parton distribution functions (TMDs), employing polarized semi-inclusive deep inelastic scattering processes. The nucleon tomography provided by TMDs will uncover the rich QCD dynamics, and provide quantitative information about the quark orbital angular momentum contribution to the proton spin. TMDs will also provide information on fundamental quantities such as the tensor charge of the nucleon, a quantity not only important for testing lattice QCD predictions, but also important for searches of new physics beyond the Standard Model together with the next generation of nucleon electric dipole moment experiments. Her group is playing leading roles in the Solenoidal Large Intensity Device (SoLID) project at Jefferson Lab, a high profile program which will make major impact on TMD physics, proton mass puzzle through precision measurement of J/psi production near threshold, and search for new physics beyond the Standard Model using parity-violating deep inelastic scattering. Most of her work utilizes the novel experimental technique of scattering polarized electrons or photons from polarized gas targets. Her group has built a number of state-of-the-art polarized gas targets including H/D internal gas target and a high-pressure polarized 3He target for photon experiments using the High Intensity Gamma Source (HIGS) facility at the Duke Free Electron Laser Laboratory (DFELL). Her research is being carried out mostly at the Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, and the HIGS facility at DFELL.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.