An Investigation into the Multiscale Nature of Turbulence and its Effect on Particle Transport

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

168
views
167
downloads

Abstract

We study the effect of the multiscale properties of turbulence on particle transport, specifically looking at the physical mechanisms by which different turbulent flow scales impact the settling speeds of particles in turbulent flows. The average settling speed of small heavy particles in turbulent flows is important for many environmental problems such as water droplets in clouds and atmospheric aerosols. The traditional explanation for enhanced particle settling speeds in turbulence for a one-way coupled (1WC) system is the preferential sweeping mechanism proposed by Maxey (1987, J. Fluid Mech.), which depends on the preferential sampling of the fluid velocity gradient field by the inertial particles. However, Maxey's analysis does not shed light on role of different turbulent flow scales contributing to the enhanced settling, partly since the theoretical analysis was restricted to particles with weak inertia.

In the first part of the work, we develop a new theoretical result, valid for particles of arbitrary inertia, that reveals the multiscale nature of the preferential sweeping mechanism. In particular, the analysis shows how the range of scales at which the preferential sweeping mechanism operates depends on particle inertia. This analysis is complemented by results from Direct Numerical Simulations (DNS) where we examine the role of different flow scales on the particle settling speeds by coarse-graining (filtering) the underlying flow. The results explain the dependence of the particle settling speeds on Reynolds number and show how the saturation of this dependence at sufficiently large Reynolds number depends upon particle inertia. We also explore how particles preferentially sample the fluid velocity gradients at various scales and show that while rapidly settling particles do not preferentially sample the fluid velocity gradients, they do preferentially sample the fluid velocity gradients coarse-grained at scales outside of the dissipation range.

Inspired by our finding that the effectiveness of the preferential sweeping mechanism depends on how particles interact with the strain and vorticity fields at different scales, we next shed light on the multiscale dynamics of turbulence by exploring the properties of the turbulent velocity gradients at different scales. We do this by analyzing the evolution equations for the filtered velocity gradient tensor (FVGT) in the strain-rate eigenframe. However, the pressure Hessian and viscous stress are unclosed in this frame of reference, requiring in-depth modelling. Using data from DNS of the forced Navier-Stokes equation, we consider the relative importance of local and non-local terms in the FVGT eigenframe equations across the scales using statistical analysis. We show that the anisotropic pressure Hessian (which is one of the unclosed terms) exhibits highly non-linear behavior at low values of normalized local gradients, with important modeling implications. We derive a generalization of the classical Lumley triangle that allows us to show that the pressure Hessian has a preference for two-component axisymmetric configurations at small scales, with a transition to a more isotropic state at larger scales. We also show that the current models fail to capture a number of subtle features observed in our results and provide useful guidelines for improving Lagrangian models of the FVGT.

In the final part of the work, we look at how two-way coupling (2WC) modifies the multiscale preferential sweeping mechanism. We comment on the the applicability of the theoretical analysis developed in the first part of the work for 2WC flows. Monchaux & Dejoan (2017, Phys. Rev. Fluids) showed using DNS that while for low particle loading the effect of 2WC on the global flow statistics is weak, 2WC enables the particles to drag the fluid in their vicinity down with them, significantly enhancing their settling, and they argued that two-way coupling suppresses the preferential sweeping mechanism. We explore this further by considering the impact of 2WC on the contribution made by eddies of different sizes on the particle settling. In agreement with Monchaux & Dejoan, we show that even for low loading, 2WC strongly enhances particle settling. However, contrary to their study, we show that preferential sweeping remains important in 2WC flows. In particular, for both 1WC and 2WC flows, the settling enhancement due to turbulence is dominated by contributions from particles in straining regions of the flow, but for the 2WC case, the particles also drag the fluid down with them, leading to an enhancement of their settling compared to the 1WC case. Overall, the novel results presented here not only augments the current understanding of the different physical mechanisms in producing enhanced settling speeds from a fundamental physics perspective, but can also be used to improve predictive capabilities in large-scale atmospheric modeling.

Description

Provenance

Citation

Citation

Tom, Josin (2022). An Investigation into the Multiscale Nature of Turbulence and its Effect on Particle Transport. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25247.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.