Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls.


BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM(2.5) and ozone using two composition-climate models, and calculated associated changes in premature PM(2.5)- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM(2.5) and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM(2.5) relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.





Published Version (Please cite this version)


Publication Info

Anenberg, Susan C, Joel Schwartz, Drew Shindell, Markus Amann, Greg Faluvegi, Zbigniew Klimont, Greet Janssens-Maenhout, Luca Pozzoli, et al. (2012). Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ Health Perspect, 120(6). pp. 831–839. 10.1289/ehp.1104301 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Drew Todd Shindell

Nicholas Distinguished Professor of Earth Science

Drew Shindell is Nicholas Professor of Earth Science at Duke University. From 1995 to 2014 he was at the NASA Goddard Institute for Space Studies in New York City and taught at Columbia University. He earned his Bachelor's at UC Berkeley and PhD at Stony Brook University, both in Physics. He studies climate change, air quality, and links between science and policy. He has been an author on >250 peer-reviewed publications, received awards from Scientific American, NASA, the NSF and the EPA, and is a fellow of AGU and AAAS.

He has testified on climate issues before both houses of the US Congress (at the request of both parties), developed a climate change course with the American Museum of Natural History, and made numerous media appearances as part of his outreach efforts. He chaired the 2011 UNEP/WMO Integrated Assessment of Black Carbon and Tropospheric Ozone, and was a Coordinating Lead Author on the 2013 Fifth Assessment Report of the IPCC and on the 2018 IPCC Special Report on 1.5°C. He also chairs the Scientific Advisory Panel to the Climate and Clean Air Coalition of nations and organizations.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.