A Mathematical Theory of Optimal Milestoning (with a Detour via Exact Milestoning)

Loading...
Thumbnail Image

Date

2017-04-23

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

131
views
140
downloads

Abstract

Milestoning is a computational procedure that reduces the dynamics of complex systems to memoryless jumps between intermediates, or milestones, and only retains some information about the probability of these jumps and the time lags between them. Here we analyze a variant of this procedure, termed optimal milestoning, which relies on a specific choice of milestones to capture exactly some kinetic features of the original dynamical system. In particular, we prove that optimal milestoning permits the exact calculation of the mean first passage times (MFPT) between any two milestones. In so doing, we also analyze another variant of the method, called exact milestoning, which also permits the exact calculation of certain MFPTs, but at the price of retaining more information about the original system's dynamics. Finally, we discuss importance sampling strategies based on optimal and exact milestoning that can be used to bypass the simulation of the original system when estimating the statistical quantities used in these methods.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

Professor of Mathematics

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.