Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment.

Abstract

Cancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1172/JCI65745

Publication Info

Hanks, Brent A, Alisha Holtzhausen, Katherine S Evans, Rebekah Jamieson, Petra Gimpel, Olivia M Campbell, Melissa Hector-Greene, Lihong Sun, et al. (2013). Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment. J Clin Invest, 123(9). pp. 3925–3940. 10.1172/JCI65745 Retrieved from https://hdl.handle.net/10161/13297.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hanks

Brent A. Hanks

Associate Professor of Medicine

We are interested in understanding the mechanisms that cancers have evolved to suppress the generation of tumor antigen-specific immune responses and how this knowledge can be exploited for the development of novel and more effective cancer immunotherapy strategies. This work involves the utilization of both autochthonous transgenic tumor model systems as well as clinical specimens to develop novel strategies to enhance the efficacy of immunotherapies while also developing predictive biomarkers to better guide the management of cancer patients with these agents. We strive to translate our understanding of the fundamental biochemical and metabolic pathways within the tumor microenvironment that are critical for driving immune evasion and resistance into early phase clinical trial testing.

Our work utilizes a variety of techniques and methodologies that span the breadth of basic biological research. This work integrates studies based on both 1) transgenic mouse tumor models that are monitored using bioluminescence and micro-CT imaging and 2) a variety of clinical specimens.

Our current areas of focus include:

  1. Investigating mechanisms of adaptive or acquired immunotherapy resistance in cancer
  2. Studying the relationship between EMT pathways and immunotherapy resistance.
  3. Elucidating mechanisms of dendritic cell tolerization in the tumor microenvironment and how these processes may contribute to immunotherapy resistance
  4. Development of novel pharmacologic and genetic strategies to overcome immunotherapy resistance
  5. Investigating mechanisms contributing to select immunotherapy-associated toxicities
Nixon

Andrew Benjamin Nixon

Professor in Medicine

Andrew Nixon, PhD, MBA (Professor of Medicine) is Director of the Phase I Biomarker Laboratory, which brings together clinical, translational and basic research to pursue the development of novel biomarkers defining mechanisms of sensitivity, resistance, and toxicity to given therapeutic drug classes, particularly anti-angiogenic agents. Additionally, the laboratory has been appointed as a Molecular Reference Laboratory for the Alliance oncology cooperative group, a national clinical trial research group sponsored by the National Cancer Institute. The laboratory has quality control procedures in place to address many of the issues involved in clinical trial research including determination of sample quantity, sample integrity, and sample heterogeneity. We have spent considerable time developing robust assays that utilize limited amounts of specimen while providing high quality data. Multiplex ELISA and gene expression arrays are used to analyze serially collected blood and paraffin samples archived from cancer patient clinical trials. This work has the potential to improve the efficacy and toxicity of current therapies and to guide the development of the next generation of anti-angiogenesis therapies for cancer and other diseases.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.