Compressive video sensors using multichannel imagers.

dc.contributor.author

Shankar, Mohan

dc.contributor.author

Pitsianis, Nikos P

dc.contributor.author

Brady, David J

dc.coverage.spatial

United States

dc.date.accessioned

2011-06-21T17:27:39Z

dc.date.issued

2010-04-01

dc.description.abstract

We explore the possibilities of obtaining compression in video through modified sampling strategies using multichannel imaging systems. The redundancies in video streams are exploited through compressive sampling schemes to achieve low power and low complexity video sensors. The sampling strategies as well as the associated reconstruction algorithms are discussed. These compressive sampling schemes could be implemented in the focal plane readout hardware resulting in drastic reduction in data bandwidth and computational complexity.

dc.description.version

Version of Record

dc.identifier

http://www.ncbi.nlm.nih.gov/pubmed/20357845

dc.identifier

195370

dc.identifier.eissn

1539-4522

dc.identifier.uri

https://hdl.handle.net/10161/4207

dc.language

eng

dc.language.iso

en_US

dc.publisher

Optica Publishing Group

dc.relation.ispartof

Appl Opt

dc.relation.journal

Applied Optics

dc.title

Compressive video sensors using multichannel imagers.

dc.title.alternative
dc.type

Journal article

duke.date.pubdate

2010-4-1

duke.description.issue

10

duke.description.volume

49

pubs.author-url

http://www.ncbi.nlm.nih.gov/pubmed/20357845

pubs.begin-page

B9

pubs.end-page

17

pubs.issue

10

pubs.organisational-group

Duke

pubs.organisational-group

Electrical and Computer Engineering

pubs.organisational-group

Pratt School of Engineering

pubs.publication-status

Published

pubs.volume

49

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
276179500012.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format