A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.

dc.contributor.author

Li, Zilin

dc.contributor.author

Li, Xihao

dc.contributor.author

Zhou, Hufeng

dc.contributor.author

Gaynor, Sheila M

dc.contributor.author

Selvaraj, Margaret Sunitha

dc.contributor.author

Arapoglou, Theodore

dc.contributor.author

Quick, Corbin

dc.contributor.author

Liu, Yaowu

dc.contributor.author

Chen, Han

dc.contributor.author

Sun, Ryan

dc.contributor.author

Dey, Rounak

dc.contributor.author

Arnett, Donna K

dc.contributor.author

Auer, Paul L

dc.contributor.author

Bielak, Lawrence F

dc.contributor.author

Bis, Joshua C

dc.contributor.author

Blackwell, Thomas W

dc.contributor.author

Blangero, John

dc.contributor.author

Boerwinkle, Eric

dc.contributor.author

Bowden, Donald W

dc.contributor.author

Brody, Jennifer A

dc.contributor.author

Cade, Brian E

dc.contributor.author

Conomos, Matthew P

dc.contributor.author

Correa, Adolfo

dc.contributor.author

Cupples, L Adrienne

dc.contributor.author

Curran, Joanne E

dc.contributor.author

de Vries, Paul S

dc.contributor.author

Duggirala, Ravindranath

dc.contributor.author

Franceschini, Nora

dc.contributor.author

Freedman, Barry I

dc.contributor.author

Göring, Harald HH

dc.contributor.author

Guo, Xiuqing

dc.contributor.author

Kalyani, Rita R

dc.contributor.author

Kooperberg, Charles

dc.contributor.author

Kral, Brian G

dc.contributor.author

Lange, Leslie A

dc.contributor.author

Lin, Bridget M

dc.contributor.author

Manichaikul, Ani

dc.contributor.author

Manning, Alisa K

dc.contributor.author

Martin, Lisa W

dc.contributor.author

Mathias, Rasika A

dc.contributor.author

Meigs, James B

dc.contributor.author

Mitchell, Braxton D

dc.contributor.author

Montasser, May E

dc.contributor.author

Morrison, Alanna C

dc.contributor.author

Naseri, Take

dc.contributor.author

O'Connell, Jeffrey R

dc.contributor.author

Palmer, Nicholette D

dc.contributor.author

Peyser, Patricia A

dc.contributor.author

Psaty, Bruce M

dc.contributor.author

Raffield, Laura M

dc.contributor.author

Redline, Susan

dc.contributor.author

Reiner, Alexander P

dc.contributor.author

Reupena, Muagututi'a Sefuiva

dc.contributor.author

Rice, Kenneth M

dc.contributor.author

Rich, Stephen S

dc.contributor.author

Smith, Jennifer A

dc.contributor.author

Taylor, Kent D

dc.contributor.author

Taub, Margaret A

dc.contributor.author

Vasan, Ramachandran S

dc.contributor.author

Weeks, Daniel E

dc.contributor.author

Wilson, James G

dc.contributor.author

Yanek, Lisa R

dc.contributor.author

Zhao, Wei

dc.contributor.author

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium

dc.contributor.author

TOPMed Lipids Working Group

dc.contributor.author

Rotter, Jerome I

dc.contributor.author

Willer, Cristen J

dc.contributor.author

Natarajan, Pradeep

dc.contributor.author

Peloso, Gina M

dc.contributor.author

Lin, Xihong

dc.date.accessioned

2024-02-01T17:27:05Z

dc.date.available

2024-02-01T17:27:05Z

dc.date.issued

2022-12

dc.description.abstract

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.

dc.identifier

10.1038/s41592-022-01640-x

dc.identifier.issn

1548-7091

dc.identifier.issn

1548-7105

dc.identifier.uri

https://hdl.handle.net/10161/30072

dc.language

eng

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

Nature methods

dc.relation.isversionof

10.1038/s41592-022-01640-x

dc.rights.uri

https://creativecommons.org/licenses/by-nc/4.0

dc.subject

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium

dc.subject

TOPMed Lipids Working Group

dc.subject

Humans

dc.subject

Phenotype

dc.subject

Genome

dc.subject

Genetic Variation

dc.subject

Genome-Wide Association Study

dc.subject

Whole Genome Sequencing

dc.title

A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.

dc.type

Journal article

pubs.begin-page

1599

pubs.end-page

1611

pubs.issue

12

pubs.organisational-group

Duke

pubs.organisational-group

Sanford School of Public Policy

pubs.organisational-group

School of Medicine

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Molecular Genetics and Microbiology

pubs.organisational-group

Medicine

pubs.organisational-group

Pathology

pubs.organisational-group

Medicine, Hematology

pubs.organisational-group

Medicine, Nephrology

pubs.organisational-group

Duke Cancer Institute

pubs.organisational-group

Institutes and Provost's Academic Units

pubs.organisational-group

University Institutes and Centers

pubs.organisational-group

Duke Global Health Institute

pubs.organisational-group

Duke Institute for Brain Sciences

pubs.organisational-group

Duke Molecular Physiology Institute

pubs.organisational-group

Center for Child and Family Policy

pubs.publication-status

Published

pubs.volume

19

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format