Defining MAP4K3-mediated Signaling Pathways That Regulate mTORC1 Activation and Beyond
Date
2023
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Germinal center kinases (GCKs) belong to the mammalian Ste20-like family of serine/threonine kinases and participate in various signaling pathways needed to regulate a wide range of cellular activities. GCK-like kinase (GLK), also known as MAP4K3, belongs to the MAP kinase kinase kinase kinase (MAP4K) family of proteins and has recently been established as a key node in the amino acid response pathway and putative nutrient sensing regulator in cells, as it is required for the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1)—a central regulator of cell growth and metabolism. The precise mechanism(s) by which MAP4K3 activates mTORC1 under conditions of amino acid satiety, however, are undefined. Recent studies in the La Spada lab suggest MAP4K3 activates mTORC1 by phosphorylating the NAD-dependent deacetylase sirtuin 1 (Sirt1) and subsequently, inhibiting the LKB1-AMPK pathway—a pathway that suppresses mTORC1 activation during starvation. MAP4K3 has additionally been linked to the regulation of cellular stress responses, autophagy, growth, survival, and organismal lifespan through largely unknown pathways. My working hypothesis is that MAP4K3 serves as an amino acid sensor and activates mTORC1 through phosphorylation of Sirt1 and subsequent inhibition of the mTORC1-suppressing Sirt1-LKB1-AMPK pathway under conditions of amino acid satiety and engages different biological pathways by virtue of its protein interacting partners to control critical cellular processes involved in cell growth, survival, and lifespan. In study 1, I used amino acid depletion/restimulation experiments and phospho mass spectrometry to establish a direct link between MAP4K3 and the Sirt1-LKB1-AMPK pathway and determines that Sirt1 is phosphorylated at Threonine 344 (T344) in a MAP4K3- and amino acid-dependent manner. Furthermore, I showed that phosphorylation of T344 inhibits Sirt1 and is sufficient to restore amino acid-dependent mTORC1 activation in cells lacking MAP4K3. To elucidate additional pathways regulated by MAP4K3, in study 2, I sought to discover novel MAP4K3 interacting partners by integrating proteomics interactome data and phosphoproteomics data followed by validation studies in cells. Experiments from these studies indicate a novel role for MAP4K3 in regulating DNA double-strand break (DSB) sensing and repair in the nucleus, mTOR localization to the lysosome through the GATOR2 complex, and endocytosis. Recent discoveries regarding the important role for MAP4K3 in nutrient sensing through mTORC1 activation and other cellular activities, including cell growth, autophagy, and survival are significant because deregulation of these cellular processes has been implicated in aging, as well as a wide array of human diseases including cancer, immunological disorders, and neurodegeneration. This dissertation, thus, sheds light on the molecular mechanisms by which MAP4K3 regulates these processes and provides significant insight into the modulation of these pathways in health and disease states.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Branch, Mary Rose (2023). Defining MAP4K3-mediated Signaling Pathways That Regulate mTORC1 Activation and Beyond. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/30350.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.