Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees
Date
2016-02-15
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Global climate change has the potential to dramatically alter multiple ecosystem processes, including herbivory. The development rates of both plants and insects are highly sensitive to temperature. Although considerable work has examined the effects of temperature on spring phenologies of plants and insects individually, few studies have examined how anticipated warming will influence their phenological synchrony. We applied elevated temperatures of 1.7 and 3.4. °C in a controlled chamberless outdoor experiment in northeastern Minnesota, USA to examine the relative responses in onset of egg eclosion by forest tent caterpillar (. Malacosoma disstria Hübner) and budbreak of two of its major host trees (trembling aspen, Populus tremuloides Michaux, and paper birch, Betula papyrifera Marshall). We superimposed four insect population sources and two overwintering regimes onto these treatments, and computed degree-day models. Timing of egg hatch varied among population source, overwintering location, and spring temperature regime. As expected, the development rates of plants and insects advanced under warmer conditions relative to ambient controls. However, budbreak advanced more than egg hatch. The degree of phenological synchrony between M. disstria and each host plant was differentially altered in response to warming. The interval by which birch budbreak preceded egg hatch nearly doubled from ambient to +1.7 °C. In the case of aspen, the sequence changed from egg hatch preceding, to following, budbreak at +3.4 °C. Additionally, under temperature regimes simulating future conditions, some insect populations currently south of our study sites became more synchronous with the manipulated hosts than did currently coexisting insect populations. These findings reveal how climate warming can alter insect-host plant interactions, through changes in phenological synchrony, possibly driving host shifts among tree species and genotypes. They also suggest how herbivore variability, both among populations and within individual egg masses, may provide opportunities for adaptation, especially in species that are highly mobile and polyphagous.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Uelmen, JA, RL Lindroth, PC Tobin, PB Reich, EG Schwartzberg and KF Raffa (2016). Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management, 362. pp. 241–250. 10.1016/j.foreco.2015.11.045 Retrieved from https://hdl.handle.net/10161/27054.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.