Comparative immunogenicity of HIV-1 clade C envelope proteins for prime/boost studies.

Abstract

BACKGROUND: Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses. METHODOLOGY/PRINCIPAL FINDINGS: A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested. CONCLUSIONS/SIGNIFICANCE: While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0012076

Publication Info

Smith, Douglas H, Peggy Winters-Digiacinto, Misrach Mitiku, Sara O'Rourke, Faruk Sinangil, Terri Wrin, David C Montefiori, Phillip W Berman, et al. (2010). Comparative immunogenicity of HIV-1 clade C envelope proteins for prime/boost studies. PLoS One, 5(8). p. e12076. 10.1371/journal.pone.0012076 Retrieved from https://hdl.handle.net/10161/4560.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Montefiori

David Charles Montefiori

Professor in Surgery

Dr. Montefiori is Professor and Director of the Laboratory for HIV and COVID-19 Vaccine Research & Development in the Department of Surgery, Division of Surgical Sciences at Duke University Medical Center. His major research interests are viral immunology and HIV and COVID-19 vaccine development, with a special emphasis on neutralizing antibodies.

Multiple aspects of HIV-1 neutralizing antibodies are studied in his laboratory, including mechanisms of neutralization and escape, epitope diversity among the different genetic subtypes and geographic distributions of the virus, neutralizing epitopes, requirements to elicit protective neutralizing antibodies by vaccination, optimal combinations of neutralizing antibodies for immunoprophylaxis, and novel vaccine designs for HIV-1. Dr. Montefiori also directs large vaccine immune monitoring programs funded by the NIH and the Bill & Melinda Gates Foundation that operate in compliance with Good Clinical Laboratory Practices and has served as a national and international resource for standardized assessments of neutralizing antibody responses in preclinical and clinical trials of candidate HIV vaccines since 1988.

At the onset of the COVID-19 pandemic he turned his attention to SARS-CoV-2, with a special interest in emerging variants and how they might impact transmission, vaccines and immunotherapeutics. His rapid response to emerging SARS-CoV-2 variants of concern provided some of the earliest evidence of the potential risk the variants pose to vaccines. In May 2020, his laboratory was recruited by the US Government to lead the national neutralizing antibody laboratory program for COVID-19 vaccines.

His laboratory utilizes FDA approved validated assay criteria to facilitate regulatory approvals of COVID-19 vaccines. He has published over 750 original research papers that have helped shape the scientific rationale for antibody-based vaccines.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.