Conjugation of HIV-1 envelope to hepatitis B surface antigen alters vaccine responses in rhesus macaques.

Abstract

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1038/s41541-023-00775-y

Publication Info

Nettere, Danielle, Shakthi Unnithan, Nicole Rodgers, Junsuke Nohara, Paul Cray, Madison Berry, Caroline Jones, Lawrence Armand, et al. (2023). Conjugation of HIV-1 envelope to hepatitis B surface antigen alters vaccine responses in rhesus macaques. NPJ vaccines, 8(1). p. 183. 10.1038/s41541-023-00775-y Retrieved from https://hdl.handle.net/10161/29559.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Nettere

Danielle Nettere

Student

MD/PhD student studying cellular immunology in the context of viral infections

Unnithan

Shakthi Unnithan

Biostatistician II

Shakthi earned her Master's in Statistics with a concentration in biostatistics from North Carolina State University. Shakthi currently collaborates with researchers in the Department of Obstetrics and Gynecology and Department of Neurology. Her statistical interests include regression modeling and machine learning techniques for high dimensional data.

Cain

Derek Wilson Cain

Associate Professor in Medicine

My research focuses on the interactions of T cells and B cells during infection or following vaccination. I am particularly interested in the inter- and intracellular events that take place within germinal centers, the anatomic site of antibody evolution during an immune response.


Granek

Joshua Aaron Granek

Assistant Professor in Biostatistics & Bioinformatics

We have broad interests in using microbial genomics to understand how microbes interact with each other and their hosts. This interest includes the roles played by both beneficial and harmful bacteria, fungi, and viruses and how they interact with the immune system. We study single microbes and microbial communities, primarily using high-throughput sequencing methods. We have a particular interest in developing new experimental and analytical methods that leverage the power of high-throughput sequencing. We are also interested in using deep learning in microbiology research.

Wiehe

Kevin J Wiehe

Associate Professor in Medicine

Dr. Kevin Wiehe is the director of research, director of computational biology and co-director of the Quantitative Research Division at the Duke Human Vaccine Institute (DHVI). He has over 20 years of experience in the field of computational biology and has expertise in computational structural biology, computational genomics, and computational immunology.

For the past decade, he has applied his unique background to developing computational approaches for studying the B cell response in both the infection and vaccination settings. He has utilized his expertise in computational structural biology to structurally model and characterize HIV and influenza antibody recognition. Dr. Wiehe has utilized his expertise in computational genomics and computational immunology to develop software to analyze large scale next generation sequencing data of antibody repertoires as well as develop computational programs for estimating antibody mutation probabilities. Dr. Wiehe has shown that low probability antibody mutations can act as rate-limiting steps in the development of broadly neutralizing antibodies in HIV.

Through his PhD, postdoc work, and now his roles at DHVI, Dr. Wiehe always approaches the analysis and the scientific discovery process from a structural biology perspective. Supporting the Duke Center for HIV Structural Biology (DCHSB), Dr. Wiehe will conduct antibody sequence analysis for antibodies used in computational and molecular modeling analyses conducted.

Moody

Michael Anthony Moody

Professor of Pediatrics

Tony Moody, MD is a Professor in the Department of Pediatrics, Division of Infectious Diseases and Professor in the Department of Integrative Immunobiology at Duke University Medical Center. Research in the Moody lab is focused on understanding the B cell responses during infection, vaccination, and disease. The lab has become a resource for human phenotyping, flow characterization, staining and analysis at the Duke Human Vaccine Institute (DHVI). The Moody lab is currently funded to study influenza, syphilis, HIV-1, and emerging infectious diseases.

Dr. Moody is the director of the Duke CIVICs Vaccine Center (DCVC) at (DHVI) and co-director of the Centers for Research of Emerging Infectious Disease Coordinating Center (CREID-CC). Dr. Moody is mPI of a U01 program to develop a syphilis vaccine; this program is a collaboration with mPI Dr. Justin Radolf at the University of Connecticut. Dr. Moody is also the director of the DHVI Accessioning Unit, a biorepository that provides support for work occurring at DHVI and with its many collaborators around the world by providing processing, shipping, and inventory support for a wide array of projects.

Dr. Moody and his team are involved in many networks studying vaccine response including the Collaborative Influenza Vaccine Innovation Centers (CIVICs) and the COVID-19 Prevention Network (CoVPN).

Permar

Sallie Robey Permar

Adjunct Professor in the Department of Pathology

Dr. Permar's work focuses on the development of vaccines to prevent vertical transmission of neonatal viral pathogens. She has utilized the nonhuman primate model of HIV/AIDS to characterize the virus-specific immune responses and virus evolution in breast milk and develop a maternal vaccine regimen for protection against breast milk transmission of HIV. In addition, Dr. Permar's lab has advanced the understanding of HIV-specific immune responses and virus evolution in vertically-transmitting and nontransmitting HIV-infected women, defining maternal immune responses that may protect against neonatal transmission of HIV. Importantly, Dr. Permar has established a nonhuman primate model of congenital CMV infection adn is using this model to establish the maternal immune responses that are necessary for protection against placental virus transmission. Finally, Dr. Permar is studying the impact and prevention of postnatal CMV transmission in preterm infants.

Pollara

Justin Joseph Pollara

Associate Professor in Surgery

Dr. Justin Pollara is a member of the Duke Human Vaccine Institute and the Duke Center for Human Systems Immunology, and is Associate Director of the Duke Center for AIDS Research (CFAR) Developmental Core. He received his PhD from North Carolina State University and completed his postdoctoral training as a recipient of the Duke NIH Interdisciplinary Research Training Program in AIDS (IRTPA) T32 award in the laboratory of Dr. Guido Ferrari. He joined the faculty of the Duke Department of Surgery in 2016.

A common theme of research performed in Dr. Pollara’s laboratory is a focus on interactions between innate and adaptive immunity. Dr. Pollara’s work has contributed significantly to the understanding of the roles played by non-neutralizing antibodies in limiting HIV-1 disease progression, and in prevention of infection or control of virus replication in preclinical and clinical HIV-1 vaccine trials. Dr. Pollara’s research has also identified specific components of the immune response that reduce the risk of vertical transmission of both HIV-1 and human cytomegalovirus. The Pollara lab characterizes the phenotype and functionality of antibody-interacting innate immune cells and explores how natural genetic variation in antibodies and antibody receptors may contribute to vaccine responsiveness and immune competence. Further, with a strong interdisciplinary and collaborative approach, the Pollara Lab has broadened its scope beyond infectious diseases and is now actively leading studies aimed at understanding how inflammation, antibodies, innate immune cells, and newly described populations of T cells promote allograft injury that underlies rejection of transplanted organs.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.