Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Pathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans, these pH changes are primarily sensed by the fungus-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, probably promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes, such as alterations in pH.





Published Version (Please cite this version)


Publication Info

Pianalto, Kaila M, Kyla S Ost, Hannah E Brown and J Andrew Alspaugh (2018). Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans. The Journal of biological chemistry, 293(26). pp. 9995–10008. 10.1074/jbc.ra118.002741 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



James Andrew Alspaugh

Professor of Medicine

The focus of my research is to understand the ways in which microorganisms sense and respond to changes in their environment. As microbial pathogens enter the infected host, dramatic genetic and phenotypic events occur that allow these organisms to survive in this harsh environment. We study the model fungal organism Cryptococcus neoformans to define signal transduction pathways associated with systemic fungal diseases. This pathogenic fungus causes lethal infections of the central nervous system in patients with AIDS and other immunological disorders. In addition to being an important pathogen, C. neoformans displays well-characterized and inducible virulence determinants. It is an outstanding system for dissecting the signaling pathways associated with pathogenicity.

The main techniques used in the lab are those of molecular genetics. We are able to readily mutate C. neoformans genes by homologous recombination. Mutant strains with disruptions in targeted genes are then evaluated in vitro for various phenotypes including altered expression of polysaccharide capsule and melanin. The effects of gene disruption on pathogenicity are also evaluated in animal models of cryptococcal disease. Using these techniques, we have identified a novel G-alpha protein/cAMP-dependent signaling pathway associated with mating and pathogenicity.

This research is complemented by the other investigators in the Duke University Mycology Research Unit. The members of this research community are pursuing studies in fungal pathogenesis, identifying novel antifungal drug targets, and studying the ecology of several medically important fungi.

Keywords: Microbial Pathogenesis
Cryptococcus neoformans
Signal transduction
Fungal mating
G proteins

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.