Risk Prediction for Epithelial Ovarian Cancer in 11 United States-Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci.
Date
2016-10-15
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Clyde, Merlise A, Rachel Palmieri Weber, Edwin S Iversen, Elizabeth M Poole, Jennifer A Doherty, Marc T Goodman, Roberta B Ness, Harvey A Risch, et al. (2016). Risk Prediction for Epithelial Ovarian Cancer in 11 United States-Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci. Am J Epidemiol, 184(8). pp. 579–589. 10.1093/aje/kww091 Retrieved from https://hdl.handle.net/10161/12934.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Merlise Clyde
Model uncertainty and choice in prediction and variable selection problems for linear, generalized linear models and multivariate models. Bayesian Model Averaging. Prior distributions for model selection and model averaging. Wavelets and adaptive kernel non-parametric function estimation. Spatial statistics. Experimental design for nonlinear models. Applications in proteomics, bioinformatics, astro-statistics, air pollution and health effects, and environmental sciences.
Edwin Severin Iversen
Bayesian statistical modeling with application to problems in genetic
epidemiology and cancer research; models for epidemiological risk
assessment, including hierarchical methods for combining related
epidemiological studies; ascertainment corrections for high risk
family data; analysis of high-throughput genomic data sets.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.