Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

Abstract

Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pgen.1005553

Publication Info

Kraus, William E, Deborah M Muoio, Robert Stevens, Damian Craig, James R Bain, Elizabeth Grass, Carol Haynes, Lydia Kwee, et al. (2015). Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis. PLoS Genet, 11(11). p. e1005553. 10.1371/journal.pgen.1005553 Retrieved from https://hdl.handle.net/10161/10957.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kraus

William Erle Kraus

Richard and Pat Johnson University Distinguished Professor

My training, expertise and research interests range from human integrative physiology and genetics to animal exercise models to cell culture models of skeletal muscle adaptation to mechanical stretch. I am trained clinically as an internist and preventive cardiologist, with particular expertise in preventive cardiology and cardiac rehabilitation.  My research training spans molecular biology and cell culture, molecular genetics, and integrative human exercise physiology and metabolism. I practice as a preventive cardiologist with a focus on cardiometabolic risk and exercise physiology for older athletes.  My research space has both a basic wet laboratory component and a human integrative physiology one.

One focus of our work is an integrative physiologic examination of exercise effects in human subjects in clinical studies of exercise training in normal individuals, in individuals at risk of disease (such as pre-diabetes and metabolic syndrome; STRRIDE), and in individuals with disease (such as coronary heart disease, congestive heart failure and cancer).

A second focus of my research group is exploration of genetic determinates of disease risk in human subjects.  We conduct studies of early onset cardiovascular disease (GENECARD; CATHGEN), congestive heart failure (HF-ACTION), peripheral arterial disease (AMNESTI), and metabolic syndrome.  We are exploring analytic models of predicting disease risk using established and innovative statistical methodology.

A third focus of my group’s work is to understand the cellular signaling mechanisms underlying the normal adaptive responses of skeletal muscle to physiologic stimuli, such as occur in exercise conditioning, and to understand the abnormal maladaptive responses that occur in response to pathophysiologic stimuli, such as occur in congestive heart failure, aging and prolonged exposure to microgravity.

Recently we have begun to investigate interactions of genes and lifestyle interventions on cardiometabolic outcomes.  We have experience with clinical lifestyle intervention studies, particularly the contributions of genetic variants to interventions responses.  We call this Lifestyle Medicopharmacogenetics.

KEY WORDS:

exercise, skeletal muscle, energy metabolism, cell signaling, gene expression, cell stretch, heart failure, aging, spaceflight, human genetics, early onset cardiovascular disease, lifestyle medicine

Muoio

Deborah Marie Muoio

George Barth Geller Distinguished Professor of Cardiovascular Disease

Deb Muoio is professor in the Departments of Medicine and Pharmacology & Cancer Biology, George Barth Geller Distinguished Professor of Cardiovascular Disease, and Associate Director of the Duke Molecular Physiology Institute (DMPI). She is viewed nationally and internationally as a leader in the fields of diabetes, obesity, exercise physiology, and mitochondrial energy metabolism. Her laboratory investigates mechanisms of metabolic regulation, with emphasis on molecular events that link lifestyle factors such as over nutrition and physical inactivity to metabolic disorders, including obesity, diabetes, and heart failure. Her program features a translational approach that combines work in animal and cell-based models with human studies, using genetic engineering, molecular biology and mass spectrometry-based metabolomics and proteomics as tools to understand the interplay between mitochondrial physiology and cardiometabolic health. Her laboratory developed a sophisticated platform for deep and comprehensive assessment of mitochondrial bioenergetics and energy transduction. Her team is integrating this new platform with metabolomics, proteomics, and metabolic flux analysis to gain insights into mechanisms by which mitochondria modulate insulin action and metabolic resilience. She has published more than 120 papers in prominent journals such as Cell, Cell Metabolism, Circulation, Circulation Research, Diabetes, and JCI Insight. Dr. Muoio’s laboratory has enjoyed longstanding support from the NIDDK and NHLBI.

PhD, University of North Carolina, Chapel Hill, NC

Bain

James R. Bain

Professor in Medicine
Hauser

Elizabeth Rebecca Hauser

Professor of Biostatistics & Bioinformatics

The incorporation of personalized medicine to all areas of human health represents a turning point for human genetics studies, a point at which the discoveries made have real implications for clinical medicine.  It is important for students to gain experience in how human genetics studies are conducted and how results of those studies may be used.  As a statistical geneticist and biostatistician my research interests are focused on developing and applying statistical methods to search for genes causing common human diseases.  My research programs combine development and application of statistical methods for genetic studies, with a particular emphasis on understanding the joint effects of genes and environment. 

These studies I work on cover diverse areas in biomedicine but are always collaborative, with the goal of bringing robust data science and statistical methods to the project.  Collaborative studies include genetic and ‘omics studies of cardiovascular disease, health effects of air pollution, genetic analysis of adherence to an exercise program, genetic analysis in evaluating colon cancer risk, genetic analysis of suicide, and systems biology analysis of Gulf War Illness.

Keywords: human genetics, genetic association, gene mapping, genetic epidemiology, statistical genetics, biostatistics, cardiovascular disease, computational biology, diabetes, aging, colon cancer, colon polyps, kidney disease, Gulf War Illness, exercise behavior, suicide




Gregory

Simon Gray Gregory

Margaret Harris and David Silverman Distinguished Professor

Dr. Gregory is a tenured Professor and Director of the Brain Tumor Omics Program (BTOP) in the Duke Department of Neurosurgery, the Vice Chair of Research in the Department of Neurology, and Director of the Molecular Genomics Core at the Duke Molecular Physiology Institute. 

As a neurogenomicist, Dr. Gregory applies the experience gained from leading the sequencing of chromosome 1 for the Human Genome Project to elucidating the mechanisms underlying multi-factorial diseases using genetic, genomic, and epigenetic approaches. Dr. Gregory’s primary areas of research involve understanding the molecular processes associated with disease development and progression in brain tumors and Alzheimer’s disease, novel drug induced white matter injury repair in multiple sclerosis, and social and behavioral response to oxytocin treatment animal models of autism. 

He is broadly regarded across Duke as a leader in the development of novel single cell and spatial molecular technologies towards understanding the pathogenic mechanisms of disease development. Dr. Gregory is also the Section Chair of Genomics and Epigenetics at the DMPI and Director of the Duke Center of Autoimmunity and MS in the Department of Neurology.

Newgard

Christopher Bang Newgard

W. David and Sarah W. Stedman Distinguished Professor of Nutrition in the School of Medicine

Over its 16 year history, our laboratory has investigated mechanisms of metabolic regulation and fuel homeostasis in mammalian systems. Major projects include: 1) Mechanisms involved in regulation of insulin secretion from pancreatic islet β-cells by glucose and other metabolic fuels; 2) Development of methods for protection of β-cells against immune-mediated damage; 3) Studies on spatial organization and regulation of systems controlling hepatic glucose balance; 4) Studies on the mechanisms involved in lipid-induced impairment of insulin secretion and action in diabetes.

Shah

Svati Hasmukh Shah

Ursula Geller Distinguished Professor of Research in Cardiovascular Diseases

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.