A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme.

Loading...
Thumbnail Image

Date

2020-09

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

13
views
13
downloads

Citation Stats

Abstract

Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.omtm.2020.05.034

Publication Info

Lim, Jeong-A, Su Jin Choi, Fengqin Gao, Priya S Kishnani and Baodong Sun (2020). A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. Molecular therapy. Methods & clinical development, 18. pp. 240–249. 10.1016/j.omtm.2020.05.034 Retrieved from https://hdl.handle.net/10161/27502.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.