The full configuration interaction quantum Monte Carlo method in the lens of inexact power iteration
Abstract
In this paper, we propose a general analysis framework for inexact power iteration, which can be used to efficiently solve high dimensional eigenvalue problems arising from quantum many-body problems. Under the proposed framework, we establish the convergence theorems for several recently proposed randomized algorithms, including the full configuration interaction quantum Monte Carlo (FCIQMC) and the fast randomized iteration (FRI). The analysis is consistent with numerical experiments for physical systems such as Hubbard model and small chemical molecules. We also compare the algorithms both in convergence analysis and numerical results.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Jianfeng Lu
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.
More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.