On Finsler surfaces of constant flag curvature with a Killing field

Loading...
Thumbnail Image

Date

2017-06-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

195
views
181
downloads

Citation Stats

Attention Stats

Abstract

© 2017 Elsevier B.V. We study two-dimensional Finsler metrics of constant flag curvature and show that such Finsler metrics that admit a Killing field can be written in a normal form that depends on two arbitrary functions of one variable. Furthermore, we find an approach to calculate these functions for spherically symmetric Finsler surfaces of constant flag curvature. In particular, we obtain the normal form of the Funk metric on the unit disk D 2 .

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.geomphys.2017.02.012

Publication Info

Bryant, RL, L Huang and X Mo (2017). On Finsler surfaces of constant flag curvature with a Killing field. Journal of Geometry and Physics, 116. pp. 345–357. 10.1016/j.geomphys.2017.02.012 Retrieved from https://hdl.handle.net/10161/15692.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bryant

Robert Bryant

Phillip Griffiths Professor of Mathematics

My research concerns problems in the geometric theory of partial differential equations.  More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy.

Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems.  Because of their built-in invariance properties, these systems often have special features that make them difficult to treat by the standard tools of analysis, and so my approach uses ideas and techniques from the theory of exterior differential systems, a collection of tools for analyzing such PDE systems that treats them in a coordinate-free way, focusing instead on their properties that are invariant under diffeomorphism or other transformations.

I’m particularly interested in geometric structures constrained by natural conditions, such as Riemannian manifolds whose curvature tensor satisfies some identity or that supports some additional geometric structure, such as a parallel differential form or other geometric structures that satisfy some partial integrability conditions and in constructing examples of such geometric structures, such as Finsler metrics with constant flag curvature.

I am also the Director of the Simons Collaboration Special Holonomy in Geometry, Analysis, and Physics, and a considerable focus of my research and that of my students is directed towards problems in this area.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.