On Finsler surfaces of constant flag curvature with a Killing field

dc.contributor.author

Bryant, RL

dc.contributor.author

Huang, L

dc.contributor.author

Mo, X

dc.date.accessioned

2017-11-01T13:24:04Z

dc.date.available

2017-11-01T13:24:04Z

dc.date.issued

2017-06-01

dc.description.abstract

© 2017 Elsevier B.V. We study two-dimensional Finsler metrics of constant flag curvature and show that such Finsler metrics that admit a Killing field can be written in a normal form that depends on two arbitrary functions of one variable. Furthermore, we find an approach to calculate these functions for spherically symmetric Finsler surfaces of constant flag curvature. In particular, we obtain the normal form of the Funk metric on the unit disk D 2 .

dc.identifier.issn

0393-0440

dc.identifier.uri

https://hdl.handle.net/10161/15692

dc.publisher

Elsevier BV

dc.relation.ispartof

Journal of Geometry and Physics

dc.relation.isversionof

10.1016/j.geomphys.2017.02.012

dc.title

On Finsler surfaces of constant flag curvature with a Killing field

dc.type

Journal article

duke.contributor.orcid

Bryant, RL|0000-0002-4890-2471

pubs.begin-page

345

pubs.end-page

357

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

116

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1702.06688v1.pdf
Size:
166.74 KB
Format:
Adobe Portable Document Format